
Copyright ©

LONMARK® Resource File
Developer’s Guide

Introduction

LonMark resource files are files that define the components of the external interface for one
or more LONWORKS® devices. These files allow installation tools and operator interface
applications to interpret data produced by a device and to correctly format data sent to a
device. They also help a system integrator or system operator to understand how to use a
device and to control the LONMARK objects on a device. LONMARK resource files are available
that define the standard components used in the external interface of a device. Device
manufacturers must create user-defined resource files for any user-defined components
defined within the external interface of a device.

There are four types of LonMark resource files. These are described in this guide, and are
summarized in the following table:

Type File Defines network variable, configuration property, and
enumerated types. LONMARK standard network variable and
configuration property types are defined in the
STANDARD.TYP file. Type files have a .TYP extension.

Functional Profile Template Defines functional profiles that are used for describing
LONMARK objects. A functional profile specifies the mandatory
and optional network variable and configuration property
components of a LONMARK object. Some of the optional
network variables and configuration properties may not be
present on a particular LONMARK object derived (re-defined)
from the standard functional profile template of that LONMARK

object. LONMARK standard functional profiles are defined in the
STANDARD.FPT file. Functional profile templates have a .FPT
extension.

Format File Defines display and input formats for network variable and
configuration property types defined in a type file. Formats for
the LONMARK standard network variable and configuration
property types are defined in the STANDARD.FMT file. Format
files have a .FMT extension.

2 LONMARK Resource File Developer’s Guide

Language File Defines language-dependent strings. There is a separate
language file for each supported language. The language the
file supports determines the extension of a language file. Two
language files are currently available for the LONMARK standard
type files; these are STANDARD.ENU for American English
and STANDARD.ENG for British English.

The LONMARK standard resource files are updated periodically as the LONMARK
Interoperability Association defines new standard types and functional profiles. The
definitions in these files are described in the Standard Network Variable Type (SNVT)
Master List, the Standard Configuration Property Type (SCPT) Master List, and standard
functional profile documents. The latest version of the resource files, master lists, and
functional profile documents are available at www.lonmark.org.

This guide describes how to create user resource files that may contain definitions of user-
defined network variable types (UNVTs), configuration property types (UCPTs), enumerated
types, functional profiles, and language-dependent strings. Every set of user resource files
must contain exactly one type file, functional profile template, format file; and one or more
language files.

Using Standard Types

A number of standard network variable and configuration property types (SNVTs and
SCPTs) have been defined for use in applications which cover most of the data formats in the
controls industries, as well as a number of standard functional profiles corresponding to
specific functions which are common in specific controls industries (e.g. temperature sensor,
lamp actuator). These standard definitions should be used in your applications whenever
possible.

In some cases, you may find that there is a network variable or configuration property type
that you want to use which is not defined in the SNVT and SCPT lists, perhaps a data type
which is specific to your implementation or company. In this case, you may create user
resource files, which allow you to define user network variable and configuration property
types (UNVTs and UCPTs), as well as user functional profile types (UFPTs). If you believe
that the UNVTs, UCPTs, and UFPTs you create would be useful to others in your industry,
you may propose them for adoption by the LONMARK Association.

Resource File Utilities

The following utilities, available at www.lonmark.org, can be used to create and manage
LONMARK resource files. Their use is described under Creating LonMark User Resource Files
and Format File Format.

DRFUSRNV Type
Preprocessor

Converts one or more header files into a preliminary user
definition file called USER.DEF. The input header files define
the structures, unions, and type definitions used in defining
network variables, configuration properties, and application
messages. This file is an intermediate file that you must edit,
and rename, using a text editor, before converting to binary

LONMARK Resource File Developer’s Guide 3

form.

TYPFILW Resource File
Compiler

Converts a user definition file into a set of LONMARK resource
files consisting of a type file, a language file, and a functional
profile template file. The user definition file is a text file.

TYPFILR Resource File
Reader

Converts a set of LONMARK resource files (i.e., a type file, a
language file, and a functional profile template file) into a user
definition file (.DEF extension). Any or all of these files can be
empty, or contain data, but they all must exist. They all must
contain the same scope selector and program ID reference.

FMT Format File Converter Converts version 3 format files to version 2 format files. For
use with legacy network tools that do not support version 3
format files. See Format File Format later in this document for
more information.

MKCAT Resource Catalog
Builder

Creates a resource file catalog. For use with legacy network
tools that do not include a resource file catalog browser.

A new, easier to use utility, is also available in beta form. The beta version of this utility is
called the LONMARK Wizard. It is also available at www.lonmark.org. This utility will be
released in final form in 2001.

Managing Resource Files

There may be multiple sets of LONMARK resource files on a PC. In addition to the standard
resource files, there may be one or more sets of user resource files from one or more
manufacturers. Each set of resource files must be contained in a single folder, but there may
be multiple sets of resource files. For example, a network may contain devices from several
different manufacturers, and each manufacturer may supply their own set of resource files
with type, functional profile, format, and language information specific to their devices.
Each set of resource files may be kept in a separate folder. These folders are typically
installed in the LONWORKS “\Types\User” folder, each identified by the manufacturer name.

An open application-programming interface (API) is available for accessing these files. This
API is called the LONMARK Resource File API. The LONMARK Resource File API maintains a
resource file catalog with a filename of LDRF.CAT. The resource file catalog contains a list
of all resource files and their locations to be used by the LONMARK Resource File API.

To be able to associate a resource file with a network variable, configuration property, or
LONMARK object on a device, each set of resource files must be associated with a particular
program ID, a range of program IDs, or with all program IDs. The type of association is
called the scope of the resource file, and the scope is specified using a scope selector. The
scope selector for a resource file specifies what part or parts of a device’s program ID should
be used when selecting the resource file.

The scope selector is an integer value between 0 and 6 as defined in the following table:

4 LONMARK Resource File Developer’s Guide

Scope
Selector Scope Definition

0 Used for resource files containing standard definitions for all devices
from any manufacturer. This selector value can only be used for
resource files created by the LONMARK Interoperability Association.

1 Used for resource files containing standard definitions for all devices of
a specified device class from any manufacturer. This selector value
can only be used for resource files created by the LONMARK

Interoperability Association.

2 Used for resource files containing standard definitions for all devices of
a specified device class and device subclass from any manufacturer.
This selector value can only be used for resource files created by the
LONMARK Interoperability Association.

3 Used for resource files containing user definitions for all devices of a
specified manufacturer. This selector value can be used by a
manufacturer for resource files that apply to all of the manufacturer’s
devices.

4 Used for resource files containing user definitions for all devices of a
specified manufacturer and device class. This selector value can be
used by a manufacturer for resource files that apply to all of the
manufacturer’s devices of a specific device class.

5 Used for resource files containing user definitions for all devices of a
specified manufacturer, device class, and device subclass. This
selector value can be used by a manufacturer for resource files that
apply to all of the manufacturer’s devices of a specific device class and
subclass.

6 Used for resource files containing user definitions for all devices of a
specified manufacturer, device class, device subclass, and model. This
selector value can be used by a manufacturer for resource files that
apply to a single device type.

For example, if a manufacturer released a set of LONMARK resource files with all type,
format, and language information for all its devices, this set of files would have a scope
selector of 3. If a LonMark resource file had a program ID of 80:00:01:05:01:02:04:00 and a
scope selector of 3, all applications with 0:00:01 (“Echelon”) as the manufacturer ID portion
of their program ID would use the types in this file.

If a manufacturer was involved in making devices in more than one industry (such as HVAC
and Lighting), they could release two sets of LONMARK resource files with a scope selector of
4. The standard LONMARK resource files discussed above have a scope selector of 0.

By using scope, LONMARK resource files are treated as a hierarchy of type definitions, with
scope 0 at the top. Resource files may refer to other resource files above them in the scope
hierarchy. For example, a file with a scope selector of 5 could contain references to scope 4,
3, and 0 resource files which match the relevant parts of the program ID.

LONMARK Resource File Developer’s Guide 5

Creating and Listing LONMARK Resource File Catalogs

Network tools may use the LONMARK Resource File API to automatically create and manage
the resource file catalog, or to provide a resource file catalog browser. You can also use the
MKCAT Resource Catalog Builder utility to manually create a resource file catalog, or list
the contents of a resource file catalog.

To user the Resource Catalog Builder, place the MKCAT.EXE program into the same
directory as the TYPFILW Resource File Compiler and the LCADRF32.DLL library. If the
STANDARD.TYP file is in the same directory just type "mkcat" at the Windows command
prompt. To list the contents of the catalog, type "mkcat -l". Any time you run Resource
Catalog Builder it also refreshes the catalog. To add type files in other directories, enter the
following command:

mkcat –a<type file path>

Be sure NOT to put a space after the “-a” and use a full path name for directories you add.
Multiple add and list commands can be combined in one call to the Resrouce Catalog Builder.

For example, the following command adds the c:\lonworks\types directory to the catalog and
list the contents of the catalog:

mkcat -ac:\lonworks\types -l

To delete entries, delete the LDRF.CAT catalog file and rebuild the catalog.

Creating LONMARK User Resource Files

To create user LONMARK resource files, follow these steps (these steps are described in more
detail in the following sections):

1. Create user type header files that contain the C declarations of your custom network
variable and configuration property types. The user type header files are Neuron C
files with a .H extension.

2. Use the DRFUSRNV type preprocessor to convert the user type header files to a
preliminary user definition file with the name USER.DEF.

3. Rename the user definition file to the name desired for the resource files.

4. Edit the preliminary user definition file to specify the scope selector and fill in
information regarding the strings, network variable types, configuration property
types, and functional profile templates.

5. Use the TYPFILW resource file compiler to convert the user definition file into user
type, language, and functional profile template files.

6. Create a user format file with format definitions for the network variable and
configuration property types defined in the user type file.

6 LONMARK Resource File Developer’s Guide

Step 1: Creating User Type Header Files

User type header files are used as the starting point for creating resource files. The header
files are text files containing Neuron C type declarations. The files consist of a main header
file and optional include files. Create a separate user type header file for each structure,
union, and typedef declaration as described under User Type Header File Format at the end
of this guide.

Step 2: Using the DRFUSRNV Type Preprocessor

The DRFUSRNV type preprocessor converts the user type header files into a preliminary
user definition file. To use the DRFUSRNV type preprocessor, open a Windows command
prompt window and type drfusrnv followed by the name of the main user type header file.
Press the Enter key to continue. The type preprocessor creates a preliminary user definition
file with a filename of USER.DEF.

Step 3: Renaming the User Definition File

Rename the preliminary user definition file that you created in step 2 to the name that you
want to use for your resource file set. The default filename is USER.DEF. For example, if
you are creating a manufacturer specific resource file, you may want to use your company
name as the name of the resource file. The extension of the user definition file must be
“.DEF”.

Step 4: Editing the User Definition File

The user definition file is a text file containing definitions for user network variable types,
user configuration property types, and user functional profiles. To create a user definition
file, edit the preliminary user definition file that you created in step 2 and renamed in step
three using any text editor. Add definitions as described under User Type Definition File
Format at the end of this guide.

Step 5: Run the TYPFILW Resource File Compiler

The TYPFILW resource file compiler converts a user definition file into a set of LONMARK
resource files consisting of a type file, a language file, and a functional profile template. Any
or all of these files can be empty, or contain data independently. To use the resource file
compiler, open a Windows command prompt window and type typefilw followed by the
name of the user definition file. Press the Enter key to continue.

The resource file compiler reads the user definition file and any enumeration definition files
and constructs a user type file, a language file, and a functional profile template. The user
definition file and the enumeration definition files must be in the same folder.

The output file names will have the same base name as the input user definition file. So, if
you use resource file compiler to convert a file named MYSTUFF.DEF, and you select US
English, you will get output files named MYSTUFF.TYP, MYSTUFF.ENU, and
MYSTUFF.FPT. The filename extension of the language file is set by the language chosen.

LONMARK Resource File Developer’s Guide 7

For example, a US English language file has the extension .ENU. None of the output files
can exist prior to running the resource file compiler, or else it will print an error message and
stop.

Step 6: Create a User Format File

A format file defines display and input formats for network variable and configuration
property types defined in a type file. The format file references the type names in a type file
so that format definitions can be associated with the appropriate data types, structures, and
enumeration names.

The user format file is a text file, and you may use any text editor to create and edit a user
format file. See Format File Format at the end of this guide for a description of the format of
a Format file.

Resource File Format Reference

The following sections define the formats of the input files required for generating resource
files.

User Type Header File Format

User type header files are used as the starting point for creating resource files. The header
files are text files containing Neuron C type declarations. The files consist of a main header
file and optional include files. Each structure, union, and typedef declaration is contained in
a separate file. If the types have been previously defined in a Neuron C application, those
declarations can be used as a starting point for creating the type declaration files.

The main header file contains one or more user types, in the form of C type definitions, using
names beginning with “UNVT_” and “UCPT” (one of these prefixes must be used for user
types). For example, this is a user type definition for cubic dimensions in millimeters:

typedef struct {
unsigned long mmWidth;
unsigned long mmHeight;
unsigned long mmDepth;

} UNVT_cubic_dimns;

LONMARK type declaration files must follow Neuron C declaration syntax as defined in the
Neuron C Programmer’s Guide and Neuron C Reference Guide, and must also meet the
following additional requirements:

 Do not include Neuron C statements that are not typedef, structure, union, or
enumeration definitions, or an include directive.

 All user types must begin with “UNVT_” or “UCPT”.

Define each enumeration in a separate include file. Reference this file with an
include directive. The format of this file must be similar to the format of the
standard SNVT_???.H include files included with the Neuron C development tools,

8 LONMARK Resource File Developer’s Guide

and available in the LONMARK standard resource files archive at www.lonmark.org.
They must contain the “/* 0 */” comments as shown in this example, otherwise
they will not be compile properly:

typedef enum hvac_hvt_t {
/* 0 */ HVT_GENERIC,
/* 1 */ HVT_FAN_COIL,
/* 2 */ HVT_VAV,
/* 3 */ HVT_HEAT_PUMP,
/* 4 */ HVT_ROOFTOP,
/* 5 */ HVT_UNIT_VENT,
/* 6 */ HVT_CHILL_CEIL,
/* 7 */ HVT_RADIATOR,
/* 8 */ HVT_AHU,
/* 9 */ HVT_SELF_CONT,
/* -1 */ HVT_NUL = -1,

} hvac_hvt_t;

 Do not include nested structure or union declarations. Expand any nested declarations
in the type declaration file. For example, the following table illustrates a nested
declaration and how it may be expanded.

Nested Declaration Expanded Declaration

struct a { struct b {
int f1; int f3;
int f2; int f4;
struct b { };

int f3;
int f4; struct a {

} f5; int f1;
}; int f2;

struct b f5;
};

 Do not include compiler preprocessor commands. Expand any preprocessor commands in
the type declaration file. For example, the following table illustrates a declaration with
preprocessor commands and how it may be expanded.

Declaration with Preprocessor
Commands

Expanded Declaration

#define uint unsigned int typedef unsigned int uint;

struct a { struct a {
uint f1; uint f1;
uint f2; uint f2;

#ifdef TEST };
int f3;

#endif
};

 Do not include comma-separated typedef declarations. Expand any typedef declarations
in the type declaration file. For example, the following table illustrates a declaration
with a comma-separated typedef and how it may be expanded.

LONMARK Resource File Developer’s Guide 9

Declaration with Comma-
Separated Typedef

Expanded Declaration

typedef unsigned int uint, typedef unsigned int uint;
*uint_p; typedef unsigned int *uint_p;

 Do not include multiple definitions for the same literal or type name. Rename any
duplicate types.

 Do not declare unnamed bitfields. Instead, use names such as “reserved1” and
“reserved2” for unused bitfields.

User Definition File Format

The user definition file is a text file containing definitions for user network variable type,
user configuration property types, and user functional profiles. The user definition file
consists of 5 sections, in the following order:

• Header

• Strings

• Network variable types

• Configuration property types

• Functional profile templates.

The contents of these sections are detailed in the following sections.

The exclamation point (“!”) is used to denote the beginning of a comment. A linefeed
automatically denotes the end of a comment, thus a multi-line comment would need to be
preceded by a “!” at the beginning of every line.

Header Section

The header section consists of the following:

• Scope selector specification line

• Program ID specification line

• Language file specification line

• Four ASCII string lines: file creator, contact phone #, internet address, and uniform
resource locator (URL)

• Type file specification line

• Four ASCII string lines: file creator, contact phone #, internet address, and URL

• Function profile template specification line

• Four ASCII string lines: file creator, contact phone #, internet address, and URL

The scope selector specification line sets the files’ scope, using the following syntax:

<SEL n>

10 LONMARK Resource File Developer’s Guide

The n field is an integer from 0 to 6. See Managing Resource Files, earlier in this guide, for
more information.

The program ID specification line sets the files’ program ID value. The program ID always
consists of eight hexadecimal bytes with the same format as the program ID of a LONMARK
Association-compliant application, even though some of the values may not be used
depending on the chosen scope—which determines the relevant bits of the program ID. For
example, if the scope is set to 3, only applications that matched digits 2-6 of the program ID
can use the types defined in this file. The program ID specification line uses the following
syntax, where nn is one hexadecimal byte (the digits ‘0’ to ‘9’ and either the characters ‘a’-‘f’
or ‘A’-‘F’ may be used).

<ID nn nn nn nn nn nn nn nn>

The language file specification line sets the information needed to create a language file.
This line consists of two integers for major and minor data version number, a three-letter
language code (that becomes the file extension of the language file), and two integer pairs
(scope and index references) specifying the strings to use for file description information and
file creator information, respectively. When editing a user type definition file for another
language, change the language code to the appropriate 3-letter extension. Typically, these
language-dependent strings would be in the string file being created, so the scopes here
would match the scope specified above. The resource file specification line uses the following
syntax:

<RES majorVer minorVer language descSel descIndex creSel creIndex>

The fields are defined as follows:

Field Description

MajorVer Major version number for the language file. Set to 1 for the first
version, and increment by one for each new version of the resource
files containing a new type definition.

MinorVer Minor version number for the language file. Set to 1 for the first
version for a new major version, and increment by one for each
new version of the resource file that does not contain a new type
definition. For example, a new resource file containing a change to
a validation range or a comment string would require a new minor
version number, but not a new major version number.

language Three-letter language code. This code becomes the extension for
the language resource file.

descSel

descIndex

Scope selector value and string index for a language file and a
string within it that contains a description of this language file.
The string will typically be in the string file being created, so the
scope selector value will typically be equal to the scope selector
defined in the scope selector specification line.

creSel

creIndex

Scope selector value and string index for a language file and a
string within it that contains the creator of this language file. The
string will typically be in the string file being created, so the scope
selector value will typically be equal to the scope selector defined
in the scope selector specification line.

LONMARK Resource File Developer’s Guide 11

For example, the following language file specification line specifies data version 1.0 of a US
English language file, with a description given by scope = 3, index = 2 (i.e. the second string
in the string section), and creator given by string scope = 3, index = 1 (i.e. the first string in
the string section):

<RES 1 0 ENU 3 2 3 1>

To create multiple language files, follow these steps:

1. Create the user type definition file as described in this section.

2. Compile using the TYPFILW resource file compiler, as described in the next section.

3. Uncompile using the TYPFILR resource file reader. This step causes any implicitly
defined stings to explicitly appear in the user definition file in the strings section (see
below).

4. Remove the body (but not the headers) of the <NVTs>, <CPTs>, and <FPTs> sections.

5. Translate the strings section into the new language and change the language field of
the RES header.

6. Recompile using the TYPFILW resource file compiler to produce a new string file, but
discard empty user type files and functional profile templates.

The resource file specification line is followed by four strings (each string beginning with a
dollar sign (“$”) on a single and separate line—there are no continuation characters). The
strings are ASCII strings. The first three strings become the creator string in the file, and
the fourth becomes the uniform resource locator (URL) string. The description string is
automatically set in accordance with the type of the file. The first three strings, as stated
above, are components of the creator string. The first string is the creator name, the second
is the creator contact info (an address or phone number), and the third string is an Internet
ID for an e-mail or web site address. An asterisk (“*”) may be used to indicate a null string.

The type file specification line sets the information needed to create a type file. This line
consists of two integers for major and minor data version number and two integer pairs
(scope and index references) specifying the strings to use for file description information and
file creator information, respectively. Typically, these language-dependent strings would be
in the string file being created, so the scopes here would match the scope specified above.
The type file specification line uses the following syntax:

<TYP majorVer minorVer descSel descIndex creSel creIndex>

The fields are defined as follows:

Field Description

MajorVer Major version number for the type file. Set to 1 for the first
version, and increment by one for each new version of the resource
files containing a new type definition.

MinorVer Minor version number for the type file. Set to 1 for the first
version for a new major version, and increment by one for each
new version of the resource file that does not contain a new type
definition. For example, a new resource file containing a change to
a validation range or a comment string would require a new minor
version number, but not a new major version number.

descSel Scope selector value and string index for a language file and a
string within it that contains a description of this type file. The

12 LONMARK Resource File Developer’s Guide

descIndex string will typically be in the string file being created, so the scope
selector value will typically be equal to the context selector defined
in the scope selector specification line.

creSel

creIndex

Scope selector value and string index for a language file and a
string within it that contains the creator of this type file. The
string will typically be in the string file being created, so the scope
selector value will typically be equal to the scope selector defined
in the scope selector specification line.

For example, the following type file specification line specifies data version 1.0 of a type file,
with description given by scope = 3, index = 4 (i.e. the fourth string in the string section), and
creator given by string scope = 3, index = 1 (i.e. the first string in the string file):

<TYP 1 0 3 4 3 1>

The type file specification line is followed by four strings (each string beginning with a dollar
sign (“$”) on a single and separate line—there are no continuation characters). The strings
are ASCII strings. The first three strings become the creator string in the file, and the
fourth becomes the URL string. The description string is automatically set in accordance
with the type of the file. The first three strings, as stated above, are components of the
creator string. The first string is the creator name, the second is the creator contact info (an
address or phone number), and the third string is an Internet ID for an e-mail or web site
address. An asterisk (“*”) may be used to indicate a null string.

The functional profile template specification line sets the information needed to create a
functional profile template. This line consists of two integers for major and minor data
version number and two integer pairs (scope and index references) specifying the strings to
use for file description information and file creator information, respectively. Typically,
these language-dependent strings would be in the string file being created, so the scopes here
would match the scope specified above. The functional profile template file specification line
uses the following syntax:

<FPT majorVer minorVer descSel descIndex creSel creIndex>

The fields are defined as follows:

Field Description

MajorVer Major version number for the functional profile template file. Set
to 1 for the first version, and increment by one for each new
version of the resource files containing a new type definition.

MinorVer Minor version number for the functional profile template file. Set
to 1 for the first version for a new major version, and increment by
one for each new version of the resource file that does not contain a
new type definition. For example, a new resource file containing a
change to a validation range or a comment string would require a
new minor version number, but not a new major version number.

descSel

descIndex

Scope selector value and string index for a language file and a
string within it that contains a description of this functional profile
template file. The string will typically be in the string file being
created, so the scope selector value will typically be equal to the
scope selector defined in the scope selector specification line.

creSel

creIndex

Scope selector value and string index for a language file and a
string within it that contains the creator of this functional profile

LONMARK Resource File Developer’s Guide 13

template file. The string will typically be in the string file being
created, so the scope selector value will typically be equal to the
scope selector defined in the scope selector specification line.

For example, the following functional profile specification line specifies data version 1.0 of a
functional profile template, with description given by string scope = 3, index = 4 (i.e. the
fourth string in the string section), and creator given by string scope = 3, index = 1 (i.e. the
first string in the string file):

<FPT 1 0 3 4 3 1>

The functional profile template file specification line is followed by four strings (each string
on a single and separate line—there are no continuation characters). The strings are ASCII
strings. The first three strings become the creator string in the file, and the fourth becomes
the URL string. The description string is automatically set in accordance with the type of
the file. The first three strings, as stated above, are components of the creator string. The
first string is the creator name, the second is the creator contact info (an address or phone
number), and the third string is an Internet ID for an e-mail or web site address.

Strings Section

The strings section of the user definition file allows you to keep all language-dependent
strings for a type file in one place. This allows you to easily create language files by
translating the list of strings (i.e. it is only necessary to edit the strings section of the user
definition file, and then recompile). These strings are referenced by the RES, TYP, and FPT
header components (see Header Section). At any point in the file where a string would be
used, a reference using the following format can be used instead:

^scope:index

The list of language-dependent strings begins with a single line marking the beginning of the
section. This line is of the following form:

<STRs>

The strings are listed one per line (there may be intervening blank lines and comments).
Each string must begin with a dollar sign (“$”), and that character is not part of the text of
the string. Strings may not contain the exclamation point (“!”), since that character is used
to begin a comment. The list of strings may be empty, but the line marking the beginning of
the section must be present. In this case, an empty string file is created. Whatever strings
are added to the string file in this section; in later sections there are string fields as well, and
the TYPFILW resource file compiler will, in those later sections, reuse the same language-
dependent string index wherever it appears. If any string in those later sections has not
already been defined in the string file, it will be added to the string file at that time, using
the next available index.

Therefore, no strings are required to be added in this section, though it is advisable to do so
to more explicitly control the ordering of strings. The control of the string order permits the
same indices to be used in each string file created for each language desired. This is a
requirement for easy management of multiple language files.

Each language file has a unique extension, which identifies the language of the strings in
that file. The following languages currently have defined extensions:

14 LONMARK Resource File Developer’s Guide

Czech "csy"
Danish "dan"
Dutch (Belgian) "nlb"
Dutch (default) "nld"
 English (UK) "eng"
English (US) "enu"
Finnish "fin"
French (Belgian) "frb"
French (Canadian) "frc"
French (default) "fra"
French (Swiss) "frs"
German (Austrian) "dea"
German (default) "deu"
German (Swiss) "des"
Greek "ell"
Hungarian "hun"
Icelandic "isl"
Italian (default) "ita"
Italian (Swiss) "its"
 Norwegian (Bokmal) "nor"
 Polish "plk"
Portuguese (Brazilian) "ptb"
Portuguese (default) "ptg"
Russian "rus"
Slovak "sky"
Spanish (default) "esp"
Spanish (Mexican) "esm"
 Swedish "sve"
Turkish "trk"

There is no API support for two-byte (wide) character sets.

Network Variable Types Section

This section lists the network variable types defined in the user definition file. The network
variable types section begins with the following line:

<NVTs>

This line may be followed by zero or more network variable type definitions. Each network
variable type definition begins with a line that contains an index, the network variable type
name, and the top-level type information. If the network variable type is a simple scalar
type, this top-level type information is the only type information needed. Otherwise, more
type information follows on subsequent lines in a C-style depth-first ordering.

The network variable type indices used in the type file must start at ‘1’ with the first
network variable type, and must increase sequentially for each subsequent network variable
type. All user network variable type names must start with the five characters “UNVT_”,
and must not be longer than 16 total characters.

The type information consists of one or more keywords and parameters as described in the
following table:

LONMARK Resource File Developer’s Guide 15

Type Keyword and Parameters Definition

quad signed A 32-bit signed value.

long signed A Neuron C 16-bit long signed integer.

long unsigned A Neuron C 16-bit long unsigned integer.

short signed A Neuron C 8-bit short signed integer.

short unsigned A Neuron C 8-bit short unsigned integer.

char signed A Neuron C 8-bit signed character.

char unsigned A Neuron C 8-bit unsigned character.

float An IEEE standard 32-bit float.

enum tagName fileName A Neuron C 8-bit signed enumeration. The
tagName parameter is the enumeration tag
name. The fileName parameter is the
enumeration definition file name.

bitfield type offset size A Neuron C bitfield. The type parameter must
be the keyword signed or unsigned. The
offset parameter is the bitfield offset in bits
from the MSB. The size parameter is the
bitfield size in bits; valid values are 1 to 8. The
valid values of the offset parameter are 0 to (8 -
size).

After the type line for a scalar, there are three string lines (any or all can be a single asterisk
(“*”), indicating NULL string, instead). The first string line is the language-dependent name
of the type (as opposed to the network variable type name, or the field name, both of which
are programmatic constructs used in Neuron C). The second string line is additional
commentary information about the type. Often, this is empty, but occasionally is used for
hints about what sort of data is expected or typical. Finally, the third string is the language-
dependent name of the units the data represents. For example, a long unsigned data type
might be represented with the following lines:

15 UNVT_flow_micr long unsigned
$Flow volume
*
$microliters/second ! my units
MIN MAX
NO SCALE

In the above example, the language-dependent string for the name is “Flow volume”. The
second string is the null string, denoted by a single asterisk. The third string (the units
string) is “microliters/second”. There are two more lines in the type definition seen above,
and these are the range line and scaling factor line.

16 LONMARK Resource File Developer’s Guide

The range line exists for all scalar types, and can be coded as MIN MAX in the case of no
range limitation, or as numeric integer (or floating point, where applicable) values
representing the minimum and maximum legal values for the type. Any of the following is
acceptable, provided the minimum and maximum values are representable by the underlying
data type:

MIN MAX
MIN maxval
minval MAX
minval maxval

The scaling factors line is required for all scalar data types except enum and float; in these
two cases scaling factors are not allowed. The scaling factors line consists of three integer
constants, a, b, and c. When converting raw data to scaled data, the formula is scaledValue =
a * (10b)* (rawValue + c)). The default scaling, that is no scaling, is thus when a = 1, b = 0,
and c = 0. Instead of specifying 1 0 0 for a scaling factors line, the more readable “NO
SCALE” can be used instead.

The following Neuron C aggregate types are also supported:

array numFields The array keyword is followed by the number of elements

struct numFields The struct keyword is followed by the number of fields

union numFields The union keyword is followed by the number of fields

When an array aggregate type is specified, it is followed by the three strings (name,
comment, units) and then is followed by another type descriptor for the element of the array.

When a struct or union type is specified, it is followed by the three strings (name, comment,
units) and then is followed by a number of type descriptors for the fields of the structure or
union. If any of those type descriptors are arrays, structures, or unions, they will be first
followed by their component types before resuming the list of the field types. This is what is
meant by “depth-first” ordering, and is completely analogous to the way types are specified in
the Neuron C language.

Finally, a type descriptor can be a reference to a network variable type. This is done with
the reference keyword, followed by the name of the type being referenced. The referenced
type must already exist in this type file. This descriptor is also followed by the three strings.
When the type is read by the type utilities, the reference type can be replaced by the referent
type. At that time, any of the strings from the reference, if they exist, will replace the strings
in the referent type.

The strings, referenced types, and enumerations can be in other more generic type files
rather than in the type file currently being defined. For example, if the type file being
defined has a scope selector of 3, there may exist—in addition to the standard type and
language files (scope selector 0) —type files and language files at scope selectors 1 and 2.

Besides the automatic behavior documented above, and as discussed earlier, the TYPFILW
resource file compiler permits explicit references to be used in place of strings, types, and
enums. These explicit references start with a caret character (“^”), and then are followed by
an integer scope selector, a colon, and an integer index. So, for the UNVT_flow_micr type
example shown above, recoded to use an explicit reference for the “microliters/second” string,
might appear as follows:

LONMARK Resource File Developer’s Guide 17

15 UNVT_flow_micr long unsigned
$Flow volume
*
^1:14
MIN MAX
NO SCALE

Configuration Property Types Section

This section lists the configuration property types defined in the user definition file. The
configuration property types section begins with the following line:

<CPTs>

This line may be followed by zero or more configuration property type definitions. A
configuration property type is like a network variable type, with additional data fields. The
configuration property type indices, like the network variable type indices, start with 1 and
are consecutive and increasing. The user configuration property type names must start with
the four characters “UCPT” and must not exceed 63 characters in total length. There is an
additional field on the first line of each configuration property type definition, following the
index and preceding the name. This field consists of either the characters “fxd” or “inh”. A
fxd configuration property type is a fixed type, regardless of the context in which it is used.

An inh configuration property type is a type that can be inherited from a network variable in
the context in the device where it is used. This is the implementation of a configuration
property type denoted as “SNVT_xxx”. When a configuration property is declared in a
device, it is specified as being a property of a network variable, or of a LONMARK object, or of
the entire device. When an inh configuration property type is a property of a network
variable, it inherits the type of the network variable. When an inh configuration property
type is a property of a LONMARK object, it inherits the type of the principal network variable
in the LONMARK object. The principal network variable in the LONMARK object is
determined via the functional profile template declaration associated with the LONMARK
object—although it is possible that there is no network variable designated as the principal
one.

The configuration property type declaration proceeds like the network variable type
declaration. At the end of that information, the configuration property type then has three
additional lines of data, the first two of which are optional (omission is denoted by lines with
a single asterisk), and the third of which is mandatory. The three lines are all byte array
values (groups of two hexadecimal digits separated by whitespace). The length of each byte
array is such that the number of groups of bytes is the same as the length of the
configuration property type. The first of the three lines is the minimum-range override
value, and the second is the maximum-range override value. These override values can
replace the validation range of referenced types and make the configuration property type
either more or less restrictive than the underlying network variable type. The third byte
array line gives the default, or initial, value for the configuration property type.

The following example shows the SCPT number 15, for “Input value feedback delay”:

15 fxd SCPT_in_fb_dly reference SNVT_elapsed_tm

$Input value feedback delay

18 LONMARK Resource File Developer’s Guide

$The time period between feedback output updates
*
*
00 00 00 00 3B 03 E7
00 00 00 00 00 00 00

Functional Profile Template Section

The next section lists the functional profiles defined in the user definition file. The
functional profiles section begins with the following line:

<FPTs>

This line may be followed by zero or more functional profile definitions. Each functional
profile definition begins with a line that contains the functional profile index, the functional
profile numeric key, the functional profile name, and five integers which give the counts for
number of mandatory network variables, number of optional network variables, number of
mandatory configuration properties, number of optional configuration properties, and the
index (starting from 1) of the principal network variable in the functional profile. If there is
no principal network variable, the principal network variable field should contain a 0.
Following this line are two string lines, for the language-dependent name of the functional
profile, and a language-dependent comment. The definition for standard functional profile
10, the CO2 Sensor, is given below as an example:

10 1070 SFPTCO2Sensor 2 0 3 1 1

$CO2 sensor object
$Carbon dioxide (CO2) sensor

Immediately following the base definition of the functional profile are network variable
records, each defining a network variable member of the functional profile. There is a
network variable record for each mandatory and optional network variable as specified in the
first definition line. Then, following the network variable records are configuration property
records, each defining a configuration property member of the functional profile. There is a
configuration property record for each mandatory and optional configuration property, again
as specified in the first definition line for the functional profile.

Each network variable record consists of five lines. The first line begins with an input or
output keyword followed by a programmatic name for the network variable member.
Following the name is a man or opt keyword indicating a mandatory or optional network
variable, and then the name of a network variable type. An optional keyword can follow the
name of the network variable type, and this is used to specify the protocol service type for
output network variables. This can be unack, unackr, reqrsp, or polled (ackd is the
default when no keyword is supplied).

The second and third lines are the language-dependent name of the network variable and a
language-dependent comment, respectively. The fourth and fifth lines are optional byte
arrays used as minimum and maximum values for the network variable, used to override the
base network variable type if desired. If there is no override, an asterisk (“*”) is used. As an
example, the following is the first network variable from the CO2 sensor object whose
functional profile base definition appears above:

LONMARK Resource File Developer’s Guide 19

output nvoCO2ppm man SNVT_ppm

$CO2 level
$The CO2 level in parts per million
*
*

Each configuration property record consists of six lines. The first line begins with the
programmatic name for the configuration property member. Following the name is a man or
opt keyword (indicating a mandatory or optional configuration property), and then the name
of the configuration property type, and finally an index indicating to which network variable
member the property applies (if the property applies to the whole object, 0 is used).

Optional keywords can follow the configuration property index, and are used to specify the
control for when a configuration property may be modified. These flags are the following:

Flag Definition

const Designates a constant configuration property. These
configuration properties are never changed by a network tool.
However, network tools may write such configuration properties
when residing in value file index 1 as long as the value is not
changed. Configuration properties with the const flag but
without the devspec flag can be assumed to have the same
value on all devices using the same program ID.

devspec Designates a configuration property that is constant, but may
vary by device. Network tools must therefore always read this
configuration property from the device instead of relying upon
the value in an external interface file or a value stored in a
network database. Network tools must never change this
configuration property except as a side effect of a new program
download. The const flag must also be specified whenever the
devspec flag is specified.

mfg Designates factory settings that need to be read or written when
the device is manufactured, but are not normally (or ever)
modified in the field. In this way, a standard network tool may
be used during manufacture to calibrate a device, while a field
network tool would observe the flag and prevent or require a
password to modify the value.

offline Designates a configuration property that can only be modified
while the device is offline. This flag is only applicable to direct-
memory read/write configuration parameters or network
variable configuration properties. This flag is ignored for file-
transfer configuration parameters. This is because file transfer
cannot function while an application is in the offline state. In
fact, an offline application must be placed into the online state
for the duration of any file-transfer configuration parameter
operations.

20 LONMARK Resource File Developer’s Guide

reset Designates that the device should be reset after updating this
configuration property.

obj_disable Designates that the associated LONMARK object must be
disabled while updating this configuration property.

The second and third lines are the language-dependent name of the configuration property
and a language-dependent comment, respectively. The fourth, fifth, and sixth lines are byte
arrays. The fourth line specifies an optional (“*” if omitted) minimum-value range restriction
that overrides the minimum value from the configuration property definition. The fifth line
specifies an optional (“*” if omitted) maximum-value range restriction that overrides the
maximum value from the configuration property definition. The sixth line specifies an
optional (“*” if omitted) default value that overrides the default value from the configuration
property definition.

nciMaxSendTime man SCPTmaxSendTime 0

$Maximum send time
$The maximum period of time between output value transmission
*
*
01 2C

The end of the functional profile section is also the end of the user definition file. The last
line of the file must be the following:

<End>

Format File Format

A format file defines display and input formats for network variable and configuration
property types defined in a type file. The format file references the type names in a type file
so that format definitions can be associated with the appropriate data types, structures, and
enumeration names.

This section describes the format for version 3 format files. Version 1 was the original
specification for format files. Version 2 added unit conversion, alternate formats, and default
formats. Alternate and default formats were used to support different formats for US and SI
unit types, but required two versions of every format file to support different US and SI
defaults. Version 3 adds improved localization support that works with Windows localization
support, and therefore no longer requires default formats. The new support includes locale-
specific list separator, date, and time formats. Some legacy network tools may not support
version 3 format files. The FMTCONV Format File Conversion utility, available from
www.lonmark.org, is used to convert version 3 format files to version 2 format for use with
legacy tools.

For integer, floating point, and enumeration types, the formatting is almost always a simple
conversion to a text string, although you may want to decide otherwise. For structured types
(for example, time-of-day expressed in hours, minutes, and seconds), you can specify how the
data is to be formatted. Each data type present in a format file must have a corresponding
type defined in a standard or user type file.

LONMARK Resource File Developer’s Guide 21

A format file is a text file, and you may use any text editor to create and edit a format file.
You should never modify the standard format file since it is periodically updated by Echelon.

Two lines are placed at the beginning of a format file to identify the file content and to
identify to which devices the file applies. The first line sets the program ID for the file, and
the second line defines the scope selector. The syntax for the two lines is the following:

set program_id nn:nn:nn:nn:nn:nn:nn:nn;
set selector selectorName;

The keywords in the two lines are case insensitive. The semicolon terminating characters
are required.

The program ID specification line sets the file’s program ID value. The program ID always
consists of eight hexadecimal bytes with the same format as the program ID of a LONMARK
Association-compliant application, even though some of the values may not be used,
depending on the chosen scope. Each nn in the program ID specification line is one
hexadecimal byte (the digits ‘0’ through ‘9’ and either the characters ‘a’-‘f’ or ‘A’-‘F’ may be
used).

The scope selector specification line sets the format file’s scope as described under Managing
Resource Files earlier in this guide. The choices for selectorName are shown below, and they
correspond to the scope selector numeric values (used in the definition file) of 1-6,
respectively:

set selector DEVICE_CLASS;
set selector DEVICE_CLASS and SUB_CLASS;
set selector MANUFACTURER;
set selector MANUFACTURER and DEVICE_CLASS;
set selector MANUFACTURER and DEVICE_CLASS and SUB_CLASS;
set selector MANUFACTURER and DEVICE_CLASS and SUB_CLASS and MODEL;

For example, the following two lines specify a match in the manufacturer field for
manufacturer code 0002A:

set program_id 80:00:2A:00:00:00:00:00;
set selector MANUFACTURER;

The body of the format file consists of a series of records, one or more for each type whose
format is being defined. A format record can span several lines and contain spaces. Only
spaces within the quotes of a text format type are significant; all other spaces are ignored.

Following is the syntax for each record:

typeName[#alternateFormat]: formatSpecifier

The typeName field specifies the type name as defined in the type file. Type names are case-
sensitive.

22 LONMARK Resource File Developer’s Guide

The alternateFormat field allows you to specify an alternate format for this type. Each type
may have multiple formats defined. Each format must have it's own definition. See
Alternate Formats, below, for more information about alternate formats.

The formatSpecifier field can be any of the following:

real A single-precision, 32-bit, IEEE floating-point number.

int A signed, 32-bit integer number

discrete An 8-bit value that contains 0 or 1.

text(…) A text string.

The Text Format Specifier

The text format specifier should be used for data that is not a simple number (enumerations,
strings, characters, and structures), or where data formatted as text is preferred. The
STANDARD.FMT format file consists entirely of text format specifications, since most
network tools are adept at handling text-formatted data, and text-formatted data may be
specified for every data type.

The Grammar of the Text Format Specifier

Within the parentheses of the text format specifier, there are several constructs that may
appear — for examples, see the following sections and the STANDARD.FMT file. The
grammar is as follows:

<text format group> = '(' <text format list> ')'
= <text format>

<text format list> = <text format list> ',' <text format>
= <text format>

<text format> = '(' <condition> '?' <text format group> ':' <text format group> ')'
= '(' <text format string> ',' <field spec list> ')'
= 'time' '(' < field spec string > ',' < field spec string > [',' < field spec string >]
[',' < field spec string >] ')'
= 'date' '(' <field spec string> ',' <field spec string> ',' <field spec string> ')'

<condition> = '(' <field spec string> <conditional operator> <decimal const> ')'

<conditional operator> = '=='
= '!='

<field spec list> = <field spec list> ',' <field spec with modifiers>
= <field spec with modifiers>

<field spec with modifiers> = <field spec with multiplier and adder> <string resource
reference>
= <field spec with multiplier and adder>

LONMARK Resource File Developer’s Guide 23

<field spec with multiplier and adder> = <field spec string> <multiplier> <adder>
= <multiplier><adder>
= <field spec string>

<field spec string> = <field spec string> '.' <field name>
= <field name>

<string resource reference> = '(' <mode> ':' <index> ')'

The Components of the Text Format String

Specifying a text format string within a text format is similar to specifying a formatting
string to the C programming language printf() function, with some simplifications and
extensions. A format specification string is a quoted string within a text format specifier. If
the format string contains a type code (a percent sign followed by a letter), the corresponding
field data argument is formatted according to the type-code specification. The following type
codes may be used:

%c A single character. The base type in Neuron C must be char, int, or enum.

%d A signed or unsigned decimal number (based on the signedness defined in the type
file). The base type must be a Neuron C char, int, or long or a structure or array. If it
is a structure or an array of at least four bytes in length, it is assumed to be a Neuron
C signed 32-bit number of s32_type.

%f A floating point number. The base type must be a structure, an array, or a fixed point
Neuron C int or long. If it is a structure or array of at least four bytes in length, it is
assumed to be a Neuron C floating-point number of float_type or SNVT_xxx_f type.

%m An enumeration. The base type must be an enumerated list. If an enumeration does
not exist for the value, the format string is processed as if it were %d.

%s A null-terminated string. The base type must be an array of 8-bit data. String data
must be null terminated.

%x An unsigned hexadecimal integer. The size is determined from the type file. The
data are always treated as unsigned. The base type must be char, int, or long. If it is
a structure, or an array of at least four bytes in length, it is assumed to be a Neuron
C signed 32-bit number of s32_type.

The text format string may also include a vertical bar “|” character to specify a locale-specific
list-separator character. This character is translated to the operating system list-separator
character for the current operating system default locale. The current setting of the
Windows list-separator character may be found in the List Separator setting on the Number
tab of the Regional Options in the Windows Control Panel. The list-separator character can
only be used with LO class alternate formats, as described under Alternate Formats.

A backslash (“\”) is used as an escape character to include other format characters as text.
For example, the following characters can be included in a format string:

\% The % character.

24 LONMARK Resource File Developer’s Guide

\\ The \ character.

\" The " character.

\| The | character.

A text format string may also contain conditional formats, unit conversion factors, and
localized time and date format specifiers as desribed in the following sections.

Following is an example of a text format definition including string, floating point, and list-
separator format specifiers from the SCPTrefrigType#LO format definition:

SCPTrefrigType#LO:text("%s %f|%f|%f", refrigerant, A, B, C);

Conditional Formats

Text formats that contain the ternary “?” operator allow you to display different formats
depending on the value of a particular field. The ternary operator is used much the same
way that it is used in the C programming language (i.e. <condition> ? <format if
condition is true> : <format if condition is false>), however, only the “equal
to” ('==') and “is not equal to” ('!=') comparison operators are supported in the condition. In
order to ensure that the format specified may be formatted and unformatted for all data
values, the field that appears in the conditional statement should appear in a regular format
specification string before it appears in the conditional statement. Formats are processed in
left-to-right order.

Following is an example of a format definition with conditional format specifiers from the
SNVT_earth_pos#SI format definition:

SNVT_earth_pos#SI: text(("%d %d ", latitude_direction,
longitude_direction),
((latitude_direction == 0) ? ("S") : ("N")),
(" %d %d ", latitude_deg, latitude_min),
((longitude_direction == 0) ? ("E") : ("W")),
(" %d %d %f", longitude_deg, longitude_min,
height_above_sea)); ! meters above sea level

Unit Conversion Factors

The text format may specify unit conversion factors (a multiplier and an adder) for simple
data types, and also for fields of a structured type. The unit conversion factors are applied as
a multiplication and an addition when data is converted for output, and they are applied in
the reverse order, as a subtraction and a division when data is input. If a localized string
reference is specified, it will override the unit description string found in the type file.

Alternate formats with unit conversion factors can be used for converting units to the United
States (US) measurement system.

For examples of unit conversion of a non-structured type, the following two lines define the
Système Internationale (SI) and US formats for the SNVT_temp_f standard network variable
type:

SNVT_temp_f#SI: text("%f", *1+0(0:854)); ! degrees C
SNVT_temp_f#US: text("%f", *1.8+32(0:855)); ! degrees F

LONMARK Resource File Developer’s Guide 25

For examples of unit conversion of individual fields of a structured type, the following lines
define the SI and US formats for the SCPTsetPnts standard configuration property type:

SCPTsetPnts#SI: text("%f,%f,%f,%f,%f,%f",
occupied_cool, standby_cool, unoccupied_cool,
occupied_heat, standby_heat, unoccupied_heat);

SCPTsetPnts#US: text("%f,%f,%f,%f,%f,%f", ! degrees F
occupied_cool*1.8+32(0:855),
standby_cool*1.8+32(0:855),
unoccupied_cool*1.8+32(0:855),
occupied_heat*1.8+32(0:855),
standby_heat*1.8+32(0:855),
unoccupied_heat*1.8+32(0:855));

Localized Time and Date Formats

Within a text format specification, you may use the time and date format specifiers to format
a time or date value as specified by the operating system default locale method. The date
format specifier requires three parameters, which specify the data fields where it will find
the year, month, and day values to be formatted. The time format specifier requires two to
four parameters, specifying hour and minute values to be formatted, and optionally, second
and millisecond values.

For the Windows operating system, the current setting of the date format may be found
under Short Date Style on the Date tab of Regional Settings in the Windows Control Panel.
The current setting of the time format may be found under Time Style on the Time tab of the
Regional Settings, with the following exceptions:

1) The time format specifier does not support AM/PM time formats, so this type of time
format will be converted to a 24-hour format.

2) The time format specifier supports display of milliseconds, which is not defined in
Windows time styles. If supplied, the milliseconds field will be appended to the seconds
field, and separated from the seconds field by the Decimal Symbol character from the
Number tab of the Regional Settings.

The time and date format specifiers may only be used in LO class alternate formats, as
described under Alternate Formats.

Following is an example of a format definition with time format specifier from the
SCPTmaxSntT#LO format definition:

SCPTmaxSndT#LO: text(("%d ", day),
time(hour, minute, second, millisecond));

Following is an example of a format definition with date format specifier from the
SNVT_date_cal#LO format definition:

SNVT_date_cal#LO: text(date(year, month, day));

26 LONMARK Resource File Developer’s Guide

Alternate Formats

Alternate formats are used to specify multiple formats for a single type. Alternate formats
are grouped into alternate format classes, where an alternate format class defines a set of
related alternate formats. Alternate format classes are identified by two-character, upper-
case, substrings within an alternate format specifier. Three standard alternate format
classes are defined to support locale-specific formatting. The standard alternate formats are
the following:

1) SI = Système Internationale measurement system format (also known as metric)

2) US = United States measurement system format

3) LO = operating system (e.g. Microsoft Windows) locale-specific format

The SI and US classes have a special relationship: Any type that has at least one format
defined with one of these classes must also have at least one format defined with the other
one of these classes. Any format definition that specifies one of these classes cannot specify
the other one—they are complimentary. Membership in these classes, together with the
Windows system default locale, determines the runtime default format as described under
Default Format.

Any format definition that contains the list-separator, date, or time locale-specific specifier
must be a member of the LO alternate format class. This aids in ensuring backward
compatibility and also make it obvious to the user that locale-specific data transformations
will occur when using this format.

If an alternate format belongs to one or more alternate format classes, the alternate format
class names must appear immediately following the pound “#” character. If one of the
classes is the US or SI class, the US or SI class name must be listed first, immediately
following the pound “#” character. If a format belongs to multiple alternate format classes,
the alternate format class names must be separated by an underscore character (“_”), and an
underscore character must also separate any alternate format class names from the rest of
the alternate format specifier. The rest of the alternate format specifier extension should use
lower- or mixed-case letters, and to avoid confusion, should not use two upper-case letters in
a row.

Following is an example of a format definition that specifies both an SI and LO alternate
format class, from the SCPTsetPnts#SI_LO format definition:

SCPTsetPnts#SI_LO:text("%f|%f|%f|%f|%f|%f",
occupied_cool, standby_cool, unoccupied_cool,

occupied_heat, standby_heat, unoccupied_heat);

Following are examples of two format definitions that both specify US alternate format
classes, but one includes a “diff” format name extension to differentiate it from the other.
These are from the SNVT_temp#US and SNVT_temp#US_diff format definitions:

SNVT_temp#US: text("%f", *1.8+32(0:855)); ! degrees F
SNVT_temp#US_diff:text("%f", *1.8+0(0:855));

! degrees F (differential, no offset)

LONMARK Resource File Developer’s Guide 27

Default Format

If multiple formats exist for a given type, one of the formats is defined as the default. The
default format is the format that will be assigned if the user specifies only the type name,
with no alternate format. The default is selected from all formats with a matching type
name based on the following criteria, in priority order:

1. A format definition preceded by an asterisk (“*”). A maximum of one default format per
type may be specified.

2. A format definition that is not defined as an alternate format.

3. If the measurement system defined by the operating system locale is metric, an SI class
alternate format will be selected as the default. For example, the Windows measurement
system is defined on the Number tab of the Regional Settings on the Control Panel. If
there are multiple SI class alternate formats, the default will be selected as follows:

i) An SI class format definition preceded by a plus (“+”) character. A maximum of one
default SI class format per type may be specified.

ii) If an SI class alternate format default is not specified, the first SI class alternate
format in alphabetical order.

4. If the measurement system defined by the operating system locale is U.S., a US class
alternate format will be selected as the default. If there are multiple US class alternate
formats, the default will be selected as follows:

i) A US class alternate format name preceded by a plus (“+”) character. A maximum of
one default US class alternate format per type may be specified.

ii) If an SI alternate format default is not specified, the first US class alternate format
in alphabetical order.

5. The first alternate format in alphabetical order.

Revision 3, October 2000

Echelon, LON, LONWORKS, LONMARK, LonPoint, LONTALK, Neuron, 3120, 3150, and the
Echelon logo are registered trademarks of Echelon Corporation. LonMaker and LonSupport
are trademarks of Echelon Corporation.

	Introduction
	Using Standard Types
	Resource File Utilities
	Managing Resource Files
	Creating and Listing LonMark Resource File Catalogs
	Creating LonMark User Resource Files
	Step 1: Creating User Type Header Files
	Step 2: Using the DRFUSRNV Type Preprocessor
	Step 3: Renaming the User Definition File
	Step 4: Editing the User Definition File
	Step 5: Run the TYPFILW Resource File Compiler
	Step 6: Create a User Format File

	Resource File Format Reference
	User Type Header File Format
	User Definition File Format
	Header Section
	Strings Section
	Network Variable Types Section
	Configuration Property Types Section
	Functional Profile Template Section

	Format File Format
	The Text Format Specifier

	The Grammar of the Text Format Specifier
	The Components of the Text Format String
	Conditional Formats
	Unit Conversion Factors
	Localized Time and Date Formats
	Alternate Formats

	Default Format

