

Version 3.3
October 2002

LONMARK Interoperability Association 078-0120-01F

LONMARK®
Application-Layer
Interoperability
Guidelines

2 LONMARK Interoperability Guidelines

Echelon, LON, 3120, 3150, LonBuilder, LonTalk, LONMARK, LONWORKS,
Neuron, NodeBuilder, the Echelon logo, and the LONMARK logo are
registered trademarks of Echelon Corporation. LonMaker and
LonSupport are trademarks of Echelon Corporation. Other brand and
product names are trademarks or registered trademarks of their
respective holders.
ECHELON MAKES NO REPRESENTATION, WARRANTY, OR
CONDITION OF ANY KIND, EXPRESS, IMPLIED, STATUTORY, OR
OTHERWISE OR IN ANY COMMUNICATION WITH YOU, INCLUDING,
BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR ANY
PARTICULAR PURPOSE, NONINFRINGEMENT, AND THEIR
EQUIVALENTS.
No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior
written permission of Echelon Corporation.

Printed in the United States of America.
Copyright ©1992-2002 by Echelon Corporation.
Echelon Corporation
www.echelon.com

http://www.echelon.com/

Table of Contents 3

Table of Contents
1 Introduction...5

1.1. Introduction to LONWORKS® and LONMARK..6
1.2. Audience ..7
1.3. LONMARK Certification ...7
1.4. Character Encoding..8
1.5. Related Documentation ...8

2 Device Interfaces ..11
2.1. Device Interface Overview..12
2.2. Neuron ID..12
2.3. Standard Program ID (SPID) ..13

2.3.1. Format Field ...14
2.3.2. Manufacturer Field ...14
2.3.3. Device Class Field ...14
2.3.4. Usage Field...15
2.3.5. Channel Type Field ...15
2.3.6. Model Number Field ..16

2.4. Device Channel ID..16
2.5. Device Location Field...17
2.6. Device Self-Documentation String ...18
2.7. Functional Blocks..19

2.7.1. Implementing a Functional Block ...20
2.7.2. Network Variables ..22
2.7.3. Configuration Properties..28

2.8. Device and Functional-Block Versioning..41
2.9. Device Interface (XIF) File ...42

3 Resource Files..45
3.1. Resource File Definitions...46

3.1.1. Type Definitions ..47
3.1.2. Functional Profiles ..51
3.1.3. Language Strings...55
3.1.4. Formats ...56

3.2. Identifying Appropriate Resources ...56
3.2.1. Using Standard Resources ...57
3.2.2. Proposing New Standard Resources ..57
3.2.3. Using User Resources ...62

3.3. Managing Resource Files...64
3.4. Implementing Resource Files..66

4 LONMARK Interoperability Guidelines

4 Network Installation..71
4.1. Network Addressing..72

4.1.1. Address-Table Entries ..73
4.1.2. Network-Variable Aliases ..74
4.1.3. Domain-Table Entries ...74
4.1.4. Self-Installed Devices..75
4.1.5. Field-Installed Devices ...76

4.2. Passive Configuration Tools ...76
4.3. Service Pin ...77
4.4. Gateways to Command-Based Systems ..78
4.5. Shared-Media Considerations ..79

A Glossary..81
A.1. Definition of Terms ..82

B Language File Extensions..93
B.1. Language File Extensions ..94

C Self-Documentation Syntax and Data Representations..95
C.1. Device and Functional Blocks ...96
C.2. Network Variables ..98
C.3. Configuration Properties ...100

D Host-Based Devices..107
D.1. Network-Variable Selection...108
D.2. Device Interface...110
D.3. Dynamic Network Variables...110
D.4. Extended Network Management Commands ..111
D.5. Version 2 SI-Data Structure ...112

E New Standard Profile and Type Proposal Procedure..117
E.1. Submitting a New Proposal ..118
E.2. Contact ...119

F Requirements for Retesting, Upgrading, and Recertifying Devices121
F.1. Certified Device and Resource File Changes..122
F.2. Upgrading to the Version 3.3 Guidelines..127

Introduction 5

1

Introduction

With thousands of application developers and millions of devices installed
worldwide, the LONWORKS platform is the leading open solution for building
and home automation, industrial, transportation, and public utility control
networks. A control network is any group of devices working in a peer-to-peer
fashion to monitor sensors, control actuators, communicate reliably, manage
network operation, and provide local and remote access to network data. A
LONWORKS network uses the ANSI/EIA/CEA 709.1 Control Network Protocol
to accomplish these tasks. The ANSI/EIA/CEA 709.1 protocol is implemented
by the firmware provided with Neuron® Chips and Echelon Smart
Transceivers; this implementation is known as the LonTalk® protocol.

The standard protocol provided by the LONWORKS platform makes it possible
to design open control systems using products from multiple vendors. The
LONMARK Interoperability Guidelines provide guidelines, detailed
explanations, and technical insight on how to design interoperable products
based on the LONWORKS platform. All products that carry the LONMARK logo
(“ ”) are certified to comply with these guidelines. The LONMARK guidelines
are presented in separate volumes for ISO OSI Reference Model layers 1–6
and for layer 7 of the ANSI/EIA/CEA 709.1 protocol. This document provides
application-layer (layer 7) design guidelines, and also includes a glossary
defining terms for both volumes. The LONMARK Layer 1–6 Interoperability
Guidelines provides layer 1–6 guidelines.

6 LONMARK Interoperability Guidelines

1.1. Introduction to the LONWORKS Platform
A LONWORKS network consists of intelligent devices—such as sensors, actuators, and
controllers—that communicate with each other using the ANSI/EIA/CEA 709.1
protocol over one or more communications channels. Network devices are sometimes
also called nodes.

A device publishes information as instructed by the application that it is running.
The applications on different devices are not synchronized, and it is possible that
multiple devices may all try to communicate at the same time. Meaningful transfer
of information between devices on a network, therefore, requires organization in the
form of a set of rules and procedures. These rules and procedures are defined by the
ANSI/EIA/CEA 709.1 protocol. The protocol defines the format of the messages
being transmitted between devices and defines the actions expected when one
device sends a message to another. The protocol implementation normally takes the
form of embedded software or firmware code in each device on the network.

Applications in devices are divided into one or more functional blocks. A functional
block performs a task by receiving configuration and operational data inputs,
processing the data, and sending operational data outputs. A functional block may
receive inputs from the network, from hardware attached to the device, or from
other functional blocks on a device. A functional block may send outputs to the
network, to hardware attached to the device, or to other functional blocks on the
device.

The interface defined by the network inputs and outputs to the functional blocks on
a device is called the device interface (it is also called the application-layer interface or
the external interface). A network tool may upload the device interface definition
from the device, or it may read the device interface definition from a standalone file
called the device interface (XIF) file. In open multi-vendor networks, the design of the
device interface is vital to providing interoperability and easy integration.
Standardization of the device interfaces is an important element of designing for
interoperability.

The following chapters provide detailed information on how products based on the
LONWORKS platform should be designed so that the device interface will support
easy interoperation across a LONWORKS network. The actual application software
and hardware behind the interface is outside the scope of these guidelines. The
purpose of the guidelines is to ensure interoperability, but not interchangeability of
devices. A major benefit to end-users of interoperable devices is the freedom to
choose among suppliers for the devices as well as for the maintenance of those
devices. The ability to choose a specific device is provided by public device
interfaces that describe the function of the device and how it exchanges information
with other devices on a LONWORKS network. The ability to choose among suppliers
for system maintenance is realized by ensuring that interoperable devices do not
require any private information to be successfully commissioned.

Introduction 7

Though interoperable devices may contain proprietary data that is known only to
the device manufacturer and the manufacturer’s agents, this proprietary data is
outside the scope of these guidelines; however, the use of proprietary data cannot be
required for the successful commissioning of an interoperable device.

1.2. Audience
The information contained in the LONMARK Application-Layer Interoperability
Guidelines is particularly pertinent to original-equipment manufacturers (OEMs) who
plan to design interoperable LONWORKS products, but is also of interest to end-users
and specifiers of LONMARK products.

1.3. LONMARK Certification
Products may be submitted to the LONMARK Association for certification. A product
that is certified by the LONMARK Association as complying with the application-
layer and layer 1–6 guidelines may carry the LONMARK logo to indicate that it is
capable of being part of an interoperable LONWORKS network. The LONMARK logo
is an indication to manufacturers, end users, and network integrators that a product
can be easily linked with other products in a multi-vendor network. One of the
logos below must be used on the product documentation and/or product casing. If
no casing is provided, the logo can be placed on a circuit board or equivalent. The
logo cannot be used without at least the “3.3” designating this latest version of the
LONMARK Interoperability Guidelines.

Figure 1. LONMARK Logos

8 LONMARK Interoperability Guidelines

Contact the LONMARK Association Principal Engineer at the following address for
more information about LONMARK certification, or visit the LONMARK Web site for
LONMARK certification details.

Principal Engineer - cert@lonmark.org
LONMARK Interoperability Association
550 Meridian Avenue
San Jose, CA 95126 USA
Tel: +1-408-938-5266, Fax: +1-408-790-3493

www.lonmark.org

1.4. Character Encoding
All characters referenced in this document as required by the device interface are
single-byte, 7-bit ASCII characters unless noted otherwise.

1.5. Related Documentation
The following documents provide supplemental information to these guidelines. All
documents listed here are available at www.lonmark.org unless noted otherwise.

� ANSI/EIA/CEA 709.1 Control Network Protocol. Specifies the services available at
each of the seven layers of the ANSI/EIA/CEA 709.1 protocol. Copies of this
document are available for purchase at www.global.ihs.com.

� LONMARK Device Interface File Reference Guide. Describes the content and
structure of a device interface (XIF) file.

� LONMARK Functional Profiles. Provide detailed descriptions of all approved
LONMARK functional blocks. Up-to-date documentation on all available
LONMARK profiles is available on the LONMARK Web site at www.lonmark.org.

� LONMARK Layer 1–6 Interoperability Guidelines. Provides guidelines, detailed
explanations, and technical insight on how to design and implement the
ANSI/EIA/CEA 709 layer 1–6 interface for interoperable products based on the
LONWORKS platform. These guidelines form the basis for obtaining the use of
the LONMARK logo, which indicates that a product has been certified by the
LONMARK Association.

� LONMARK Program Overview. Describes the organizational structure and
membership options of the LONMARK Interoperability Association, and rules for
use of the LONMARK Logo.

� NodeBuilder® Resource Editor User’s Guide. Describes how to create, edit, and view
resource files using the NodeBuilder Resource Editor. Included with the
NodeBuilder Resource Editor download available from the LONMARK Web site
at www.lonmark.org.

mailto:cert@lonmark.org
http://www.lonmark.org/
http://www.lonmark.org/
http://www.global.ihs.com/
http://www.lonmark.org/
http://www.lonmark.org/

Introduction 9

� SNVT and SCPT Master List. Documents the range, units, and resolution of all
defined SNVTs and SCPTs, and defines all standard enumeration types.

� Standard Program ID Reference (spidData.xml). Specifies standard values for the
Manufacturer, Device Class, Usage, and Channel Type fields of a standard
program ID (SPID). This file is used by development and network tools to
simplify construction of standard program IDs.

� Standard Transceiver Reference (StdXcvr.xml). Describes the transceiver and
channel parameters and properties of all LONMARK channel types as well as
some channel types that are not LONMARK compliant. This file is used by
development and network tools for automatic validation and channel-type
dependent calculations.

Device Interfaces 11

2

Device Interfaces

This chapter describes the elements that comprise an interoperable device
interface:

� Neuron ID,
� Standard program ID,
� Device channel ID,
� Device location field,
� Device self-documentation string,
� Device configuration properties,
� Functional blocks.

12 LONMARK Interoperability Guidelines

2.1. Device Interface Overview
The device interface is the network-visible interface to a device. Following is a
summary of each of the elements that comprise an interoperable device interface:

� Neuron ID. A 48-bit unique identifier for a LONWORKS device.

� Standard program ID (SPID). A number that uniquely identifies the device
interface for a device.

� Device channel ID. A number that optionally specifies the channel to which the
device is attached.

� Device location field. A string or number that optionally specifies the device
location.

� Device self-documentation string. A string that specifies the functional blocks on a
device.

� Device configuration properties. Configuration data used to configure the device.
Functional blocks may also have configuration properties.

� Functional blocks. Logical components implemented on the device.

With the exception of the Neuron ID, a network tool can read all of these elements
directly from a device over the network, or from the device interface (XIF) file for the
device as described in 2.9, Device Interface (XIF) File. The benefit of making this
information available directly from the device itself is that a network tool can read
all of the information needed to integrate and manage the device over the network,
and no accompanying manufacturer documentation is required. The benefit of
making this information available from a device information file is that the device
may be designed into a network before physical access to the device is available.
The latter method is typically used for engineered systems, but the former method is
sometimes used when a device interface file is not available.

The device interface elements are described in the remainder of this chapter. Device
configuration properties are described in 2.7.3, Configuration Properties.

2.2. Neuron ID
The Neuron ID is a 48-bit number within the read-only data structure of a device as
defined by the ANSI/EIA/CEA 709.1 protocol. It is also called the unique node ID.
The Neuron ID is a unique number written to a Neuron Chip or Smart Transceiver
during manufacture, or to other processors during development or manufacturing.
Network tools use the Neuron ID to send network installation messages to a device,
prior to the device being assigned a network address as described in 4.1, Network
Addressing.

Guideline 2.2: A certified device shall implement a standard
Neuron ID as defined in 2.2, Neuron ID.

Device Interfaces 13

Manufacturers may wish to provide two copies of the Neuron ID in a human- or
machine-readable format, attached to the product. One copy should be removable
so that an installer may place it on a system drawing, or similar plan. This can even
be done using a barcode for ease and accuracy of Neuron ID input into a network
tool. An example Neuron ID barcode label is shown in the following figure.

Figure 2. Example Neuron ID Barcode Sticker

While the LONMARK Association has not standardized on a bar-coding method, the
CODE-39 format has been used by several manufacturers for compatibility with
many off-the-shelf barcode readers.

2.3. Standard Program ID
The standard program ID (SPID) is an 8-byte number within the read-only data
structure of a device as defined by the ANSI/EIA/CEA 709.1 protocol. It uniquely
identifies the device interface for a device. It is used by network tools to associate a
device with a device interface definition. This speeds up the commissioning process
by allowing a network tool to obtain the device interface definition without
uploading the entire definition from every device.

Guideline 2.3: A certified device shall implement a standard
program ID as defined in 2.3, Standard Program
ID.

The 16 hex digits of the SPID are organized as 6 fields that identify the format (F),
manufacturer (M), device class (C), usage (U), channel type (T), and model number
(N) of the device. These 6 fields are organized as follows, and are described in the
following sections:

FM:MM:MM:CC:CC:UU:TT:NN

The manufacturer, classification, channel type, and optionally the usage fields
contain standard values defined in the spidData.xml file available from the
LONMARK Web site at www.lonmark.org/spid. The spidData.xml file is a
downloadable, extensible markup language (XML) file for use with any
development or network tool. The NodeBuilder Resource Editor (available to
LONMARK members from the LONMARK Web site) and Echelon’s NodeBuilder 3
Development Tool use this file to simplify the generation of a standard program ID.
Both of these tools include a SPID Calculator that automatically builds a standard
program ID based on your selections in fields that correspond to the following
sections.

http://www.lonmark.org/spid

14 LONMARK Interoperability Guidelines

2.3.1. Format Field
The Format field contains a four-bit value defining the structure of the program ID
and device self-documentation strings. The format must be 8 or 9, where format 8 is
reserved for devices that have completed certification by the LONMARK
Interoperability Association, and format 9 is used for all other devices. Format 9
must be used for devices that will not be certified, devices that will be certified but
are still in development, and for devices that have not yet completed the certification
process. Device formats 0 – 2 and 10 – 15 (0xA – 0xF) are reserved by Echelon for
future use. Device formats 3 – 7 are used by network interfaces and legacy non-
interoperable devices and must not be used for other interoperable devices.

2.3.2. Manufacturer Field
The Manufacturer field contains a 20-bit manufacturer ID (MID). The MID uniquely
identifies the device manufacturer. The most significant bit (msb) of the MID
identifies a permanent MID (msb clear) or a temporary MID (msb set) as follows:

� Permanent MIDs are assigned to Partner and Sponsor members of the LONMARK
Interoperability Association upon request. The LONMARK Association publishes
the permanent MIDs in the spidData.xml file so that the device manufacturer of a
certified device is easily identified. Permanent MIDs are never reused or
reassigned, but the manufacturer name may change if requested by the
manufacturer (as in the case of the manufacturer being acquired by another
company).

� Temporary MIDs are available to anyone upon completing a simple form at
www.lonmark.org/mid. They are not guaranteed to be unique, and they are not
listed in the spidData.xml file.

2.3.3. Device Class Field
The Device Class field is a two-byte value identifying the primary function of the
device. This value is drawn from a registry of pre-defined Device Class definitions.

A device may implement multiple functional blocks. One of these functional blocks
may be designated as the primary functional block, and the definition of this functional
block is called the primary functional profile. If the primary functional profile number
is greater than 99 and less than 20 000, the device class may be set to the profile
number.

Standard functional profiles are also given device classes equal to their functional
profile number. If you choose to use a device class that is assigned to a standard
functional profile, then the device containing that device class must contain a
functional block implementation of that profile.

http://www.lonmark.org/mid

Device Interfaces 15

If an appropriate device class value is not available, the LONMARK Association will
assign one, if appropriate, upon request from a LONMARK member. Please send
your request for a device class to the certification email address (cert@lonmark.org).

2.3.4. Usage Field
The Usage field is a one-byte value describing the intended usage of the device. The
Usage field consists of a one-bit Changeable-Interface flag, a one-bit Functional
Profile-Specific flag, and a 6-bit usage ID. These subfields are described in the
following sections.

2.3.4.1. Changeable-Interface Flag
The Changeable-Interface flag is the msb of the Usage field. It must be set if the device
uses changeable network variable types or dynamic network variables as described
in 2.7.2.2 and D.3. The flag must be clear if the device uses a static device interface.

2.3.4.2. Functional Profile-Specific Flag
The Functional Profile-Specific flag is the second-msb of the Usage field. It must be set
if the usage ID value is defined by the primary functional profile for the device. The
flag must be clear if the usage ID value is defined by the standard usage ID values in
the spidData.xml file or if the Device Class field does not identify the functional
profile number of the primary functional profile for the device.

2.3.4.3. Usage ID
The usage ID is a 6-bit value in the least-significant portion of the Usage field that
identifies the primary intended usage of the device. Based on the setting of the
Functional Profile-Specific flag, the usage ID is defined by one of the following:

� If the Functional Profile-Specific flag is clear, the usage ID must be set to one of
the standard usage ID values in the spidData.xml file.

� If the Functional Profile-Specific flag is set, the usage ID must be set to one of the
usage ID values specified by the primary functional profile for the device, as
determined by the Device Class field.

2.3.5. Channel Type Field
The Channel Type field is a one-byte value identifying the communications channel
type supported by the device’s LONWORKS network transceiver. The standard
channel-type values are drawn from a registry of pre-defined channel-type
definitions. This field must be set to the Custom channel type if the device does not
use one of the standard channel types listed in the spidData.xml file (such a device
cannot be certified). This file includes channel types that are approved for use in
LONMARK devices, as well as channel types that have not been approved for use in
LONMARK devices. To be certified, a device must be compatible with a channel type
that has been approved for use in LONMARK devices.

mailto:cert@lonmark.org

16 LONMARK Interoperability Guidelines

2.3.6. Model Number Field
The Model Number field is a one-byte value identifying the specific product model
of the device. Model numbers are assigned by the product manufacturer and must
be unique within the device class, usage ID, and channel type for a manufacturer ID.
The same hardware may be used for multiple model numbers depending on the
program that is loaded into the hardware. The model number within the SPID does
not have to conform to the manufacturer’s marketing or engineering model
numbers. It can be used as a decimal reference, hexadecimal reference, or any other
method of convenience.

EXAMPLES

Decimal
Model

Numbers

0; 1; 2; 3;…9; 10; 11… = sequential by 1

10; 20; 30;…90; 100; 110… = incremental by 10s’
place

Hexadecimal
Model

Numbers

01; 02; 03;…09; 0A; 0B… = sequential by 1

10; 20; 30;…90; A0; B0… = incremental by
nibbles’ place

ASCII-
Character

Model
Numbers

“A”; “B”; “C”; … = sequential by 1 using ASCII
values for the representation
of characters (0x41; 0x42;
0x43;…)

2.4. Device Channel ID
The device channel ID is a 2-byte unsigned-long field within the configuration
structure of a device as defined by the ANSI/EIA/CEA 709.1 protocol. Network tools
may use the device channel ID to track the channel to which a device is attached. A
value of zero indicates that the device’s channel ID is unassigned. The device
application must not require specific values in this field since a network tool may
change the value as needed.

Guideline 2.4A: A certified device shall be manufactured with a
zero channel ID.

Device Interfaces 17

Guideline 2.4B: A certified device shall not modify its channel ID
field.

2.5. Device Location Field
The device location field is a 6-byte field within the configuration structure of a device
as defined by the ANSI/EIA/CEA 709.1 protocol. Integrators, network tools, or the
device itself may use this field to document the physical location of a device. This
field may be read and written over the network using the Read Memory and Write
Memory network-management messages defined by the ANSI/EIA/CEA 709.1
protocol. Some devices can determine their physical location by reading external
physical inputs such as DIP switches, keyed connectors, or card-cage slot numbers.
Such devices may use the device location field to communicate their physical
location information to a network tool that can use this information to identify the
physical location of the device.

Use of this field is optional, but if used must conform to the following guideline. A
device may optionally implement a SCPTlocation configuration property (see 2.7.3,
Configuration Properties) that can be used to provide a more complete location
description than is possible in the 6-byte location field. The SCPTlocation value is a
string of up to 31 characters. When used for device location, the SCPTlocation
configuration property must apply to the Node Object functional block of the device
if the device has a Node Object functional block, otherwise it must apply to the entire
device. If a device has multiple locations, such as a device with multiple remote
sensors, each of the functional blocks on the device may also implement a
SCPTlocation configuration property to identify the location of each of the remote
components. The SCPTlocation configuration property associate with the Node
Object identifies the location of the device itself, whereas the other SCPT location
configuration properties identify the locations of their respective hardware
components. The SCPT Master List provides additional guidelines for use of the
SCPTlocation configuration property.

18 LONMARK Interoperability Guidelines

Guideline 2.5A: A certified device’s application program that
wishes to communicate its physical location or ID
assignment to a network tool can write this
information into the location ID field of its
configuration structure when the device is reset.
If the most-significant bit of the first byte is one,
the information is encoded as a 15-bit unsigned
integer in the range 0 to 32,767, with the most-
significant 7-bits in the lower 7-bits of the first
byte (location[0]). If the most-significant bit of
the first byte is zero, the information is encoded
as a 0- to 6-character ASCII string. If the string
is shorter than six characters, it must be nul-
terminated (0x00).

Guideline 2.5B: A certified device that implements a SCPTlocation
configuration property to represent the device
location shall apply the CP to the Node Object
functional block if the device has a Node Object
functional block, and shall otherwise apply the CP
to the entire device.

2.6. Device Self-Documentation String
The device self-documentation string is a string of up to 1024 bytes (subject to device
memory limits) within the self-identification structure of a device as defined by the
ANSI/EIA/CEA 709.1 protocol. This string specifies the self-documentation string
structure, the functional blocks, and optionally describes the function of a device.
The Neuron C Version 2 Compiler automatically creates this string. Developers
using other tools can manually create the device self-documentation string as
described in Appendix C.

Guideline 2.6A: A certified device shall contain a device self-
documentation string that specifies the self-
documentation string structure and the functional
profiles implemented by each functional block on
the device as described in 2.6, Device Self-
Documentation String.

Guideline 2.6B: A certified device shall store the device self-
documentation string in the application image as
described in the ANSI/EIA/CEA 709.1 protocol.

Device Interfaces 19

2.7. Functional Blocks
A device application is divided into one or more functional blocks. A functional block
is a portion of a device’s application that performs a task by receiving configuration
and operational data inputs, processing the data, and sending operational data
outputs. A functional block may receive inputs from the network, hardware
attached to the device, or from other functional blocks on a device. A functional
block may send outputs to the network, to hardware attached to the device, or to
other functional blocks on the device.

The device application must implement a functional block for each function on the
device to which other devices should communicate, or that requires configuration
for particular application behavior. Each functional block must be defined by a
functional profile as described in Chapter 3, Resource Files. Functional profiles are
templates for functional blocks, and each functional block is an implementation of a
functional profile.

The network inputs and outputs of a functional block, if any, are provided by
network variables and configuration properties. A network variable is an operational
data input or output for a functional block. A configuration property is a data value
used for configuring the behavior of a network variable, functional block, or the
entire device. Configuration properties used to configure an entire device are not
part of any functional block—they are instead associated with the device itself.

A special type of functional block is called the Node Object functional block. Network
tools use the Node Object functional block to test and manage the other functional
blocks on a device. The Node Object functional block is also used to report alarms
generated by the device. In the case of a device with only a single functional block,
other mechanisms may be available for the test and management functions. In such
a case, the Node Object functional block may be omitted, provided that both of the
following conditions apply:

� The application program does not need to continue operating when the
functional block is disabled. In this case, setting the device off-line will disable
the functional block.

� The device does not implement alarms, self-test, range checking, fault detection,
file transfer, or other functions belonging to the Node Object functional block.

20 LONMARK Interoperability Guidelines

Guideline 2.7: A certified device that supports more than one
functional block shall include a Node Object
functional block to allow monitoring and control
of the functional blocks within the device. A
certified device created with a single functional
block shall also include a Node Object functional
block if the device implements alarms, self-test,
range checking, fault detection, file transfer, or
other functions belonging to the Node Object
functional block; or if the application program
must continue to operate when the functional
block is disabled.

Figure 3 illustrates the relationship between the Node Object functional block, other
functional blocks on a device, network variables, and configuration properties.
Sections 2.7.2 and 2.7.3 describe network variables and configuration properties.

Figure 3. Functional Block Interfaces

2.7.1. Implementing a Functional Block
The device self-documentation string contains a list of the functional blocks on a
device. This list identifies the functional profile number implemented by each
functional block, and assigns a unique functional block index number (also called the
global index) to each functional block on the device, starting with zero. Each network
variable and configuration property on a device includes self-documentation or
configuration data that associate the network variable or configuration property
with a functional block on the device using the functional block index number. The

Device Interfaces 21

size of this self-documentation and configuration data is also subject to device
memory limits, which is an especially important consideration for devices based on
the Neuron 3120 Chip.

To implement a functional block on a device, you can create the self-documentation
and configuration data manually, as described in Appendix C. Alternatively, if you
are developing an application using the Neuron C Version 2, or newer,
programming language, you can implement a functional block as described in this
section.

To create a functional block, use the Neuron C fblock construct to declare the
functional block and to identify the network variable and configuration property
members of the functional block. The relationship between the fblock keyword and
the network variable and configuration property members of the functional block is
shown in the following figure.

Figure 4. NV/CP Relation to Functional Block

The fblock declaration references a functional profile name as described in Chapter
3, Resource Files.

The syntax for declaring a functional block is the following (see the Neuron C
Reference Guide for a complete description of the syntax):

fblock fp-identifier { fblock-body } identifier [[array-bound]] [ext-name] [fb-prop-list] ;

The following code fragment shows an example fblock declaration that creates a
functional block with a programmatic name of fbTempSensor that is based on the
SFPThvacTempSensor functional profile.

fblock SFPThvacTempSensor {
 …
} fbTempSensor;

22 LONMARK Interoperability Guidelines

Sections 2.7.2 and 2.7.3 describe how to implement the network variable and
configuration property members of the functional block.

2.7.2. Network Variables
The ANSI/EIA/CEA 709.1 protocol employs a data-oriented application layer that
supports the sharing of data between devices, rather than simply the sending of
commands between devices. In this approach, application data such as
temperatures, pressures, states, and text strings can be sent to multiple devices—
each of which may have a different application for each type of data.

Applications exchange data with other LONWORKS devices using network variables.
Every network variable has a direction, type, and length. The network variable
direction can be either input or output, depending on whether the network variable
is used to receive or send data. The network variable type determines the format of
the data. The standard resource file set described in Chapter 3, Resource Files, defines
a set of standard types for network variables; these are called standard network
variable types (SNVTs). Device manufacturers may also create custom network variable
types as described in Chapter 3. These are called user network variable types (UNVTs).

Network variables of identical type and length but opposite directions can be
connected to allow the devices to share information. For example, an application on
a lighting device could have an input network variable that was of the switch type,
while an application on a dimmer-switch device could have an output network
variable of the same type. A network tool could be used to connect these two
devices, allowing the dimmer switch to control the lighting device, as shown in
Figure 5.

Figure 5. Network Variable Point-to-Point Connection

The direction indicated by the triangle in the above figure indicates the direction of
the network variable. A single network variable may be connected to multiple
network variables of the same type but opposite direction. A single network variable
output connected to multiple inputs is called a fan-out connection. A single network
variable input that receives inputs from multiple network variable outputs is called a
fan-in connection. Figure 6 shows the same dimmer switch being used to control
three lights using a fan-out connection:

Device Interfaces 23

Figure 6: Network Variable Fan-out Connection

The application program in a device does not need to know where input network
variable values come from or where output network variable values go. When the
application program has a changed value for an output network variable, it simply
passes the new value to the device firmware. Through a process called binding that
takes place during network design and installation, the device firmware is
configured to know the logical address of the other device or group of devices in the
network expecting that network variable’s values. It assembles and sends the
appropriate packets to these devices. Similarly, when the device firmware receives
an updated value for an input network variable required by its application program,
it passes the data to the application program. The binding process thus creates
logical connections between an output network variable in one device and an input
network variable in another device or group of devices. Connections may be
thought of as “virtual wires.” For example, the dimmer-switch device in the
dimmer-switch-light example could be replaced with an occupancy sensor, without
making any changes to the lighting device.

2.7.2.1. Implementing a Network Variable
Each network variable that is part of the interoperable interface for a device must be
associated with a functional block. A single network variable can only be associated
with a single functional block. To implement a network variable on a device and
associate it with a functional block, you can create the self-documentation data
manually as described in Appendix C. Alternatively, if you are developing an
application using the Neuron C Version 2 programming language, you can
implement a network variable as described in this section. The Neuron C Version 2
compiler automatically generates self-documentation strings as described in
Appendix C. Using either approach, the self-documentation strings must be stored

24 LONMARK Interoperability Guidelines

in non-volatile memory of the device to ensure that they are available after a power
cycle. In addition, the self-identification information for changeable-type network
variables must be stored in writeable non-volatile memory so that a network tool can
modify the SNVT index stored within the device when the type is changed.

Guideline 2.7.2.1A: A certified device shall include network variable
self-documentation strings that map network
variables to the functional blocks declared on the
device. These strings may be created by the
Neuron C Version 2 (or newer) compiler as
described in 2.7.2.1, Changeable-Type Network
Variables, or may be created manually as
described in Appendix C.

Guideline 2.7.2.1B: The network variable and configuration property
self-documentation strings shall be stored in non-
volatile memory of a certified device.

To implement a network variable using Neuron C Version 2, you must first declare
the network variable, and then identify the network variable as a member of a
functional block. The syntax for declaring a network variable is shown below (see
the Neuron C Reference Guide for a complete description of the syntax).

network input | output [netvar-modifier] [class] type
[connection-info] identifier [[array-bound]]
[= initializer-list] [nv-property-list] ;

You can declare an array of network variables using the optional array-bound
enclosed in square brackets (“[“ and “]”). You can declare a changeable-type
network variable using the changeable_type netvar-modifier.

To identify a network variable as a member of a functional block, include an nv-
reference implements member-name clause in the fblock declaration. The nv-reference
is the name supplied as the identifier in the network variable declaration. The
member-name is the name of the network variable member of the functional profile as
defined in the functional profile.

Figure 7 illustrates two example implements clauses. The first associates the
nvoTemperature network variable with the nvoHVACTemp member of the
SFPThvacTempSensor functional profile. The second associates the nvoTempFloat
network variable with the nvoFloatTemp member of the functional profile.

Device Interfaces 25

Figure 7. fblock Network Variable Member References

The following Neuron C Version 2 code implements the declarations in Figure 7:

// Network variable declarations
SNVT_temp_p output nvoTemperature;
SNVT_temp_f output nvoTempFloat;

// fblock declaration
fblock SFPThvacTempSensor {
 nvoTemperature implements nvoHVACTemp;
 nvoTempFloat implements nvoFloatTemp;
} fbTempSensor;

2.7.2.2. Changeable-Type Network Variables
Network variables may be of changeable type. Such network variables are used when
the device developer cannot know the correct type of the network variable in
advance. For example, a changeable-type output would be used for a generic sensor
device that can attach to any standard sensor and report any sensed value. The
actual type of the network variable can be changed to meet the physical units
measured, however, the developer must still declare an initial type for the network
variable.

If a device supports any changeable-type network variables, it must set the
Changeable-Interface flag in the program ID as described in 2.3.4.1, Changeable-
Interface Flag. It must also declare a SCPTnvType configuration property that
applies to the changeable-type network variable. Network tools use this
configuration property to notify the device application of changes to the network
variable type. The device application will require notification of changes to this

26 LONMARK Interoperability Guidelines

configuration property. Notification can be provided using one of the methods
described in the following procedure.

Guideline 2.7.2.2: A changeable-type network variable on a certified
device shall implement a SCPTnvType
configuration property that applies to the
changeable-type network variable.

A configuration property may inherit its type from a changeable-type network
variable. If the configuration property applies to multiple changeable-type network
variables, all of the network variables must share the same SCPTnvType
configuration property—and the same SCPTmaxNVLength configuration property if
implemented.

To create a changeable-type network variable using Neuron C Version 2, follow
these steps:

1 Declare the network variable with the changeable_type keyword. This keyword
results in information being provided in the device interface description. This
information tells that the variableʹs implementation permits the type of the
network variable to be changed by a network tool. You must declare an initial
type for the network variable, and the size of the initial type must be equal to the
largest network variable size that your application supports.

For example, the following declaration declares a changeable-type output
network variable, with an initial type of SNVT_volt_f. This type is a 4-byte
floating-point value, so this network variable can support changes to any
network variable type of 4 or less bytes.

network output changeable_type SNVT_volt_f . . .

2 Set the changeable-interface bit in the program ID.

3 Declare a SCPTnvType configuration property that applies to the changeable-
type network variable.

Your application will require notification of changes to this configuration
property. You can provide this notification by declaring the configuration
property with the reset_required modifier and checking the SCPTnvType value
in the reset director function, implementing configuration property access via
FTP and checking in the stop_transfer() function whether the SCPTnvType
value has been modified, and/or by implementing the SCPTnvType
configuration property as a configuration network variable and checking the
current type in the task for the nv_update_occurs(nv-name) event.

For example, the following code declares a changeable-type output network
variable with its SCPTnvType configuration property:

Device Interfaces 27

SCPTnvType cp_family cp_info(reset_required) nvType;
network output changeable_type SNVT_volt_f nvo1
 nv_properties {nvType};

4 You can optionally declare a SCPTmaxNVLength configuration property that
applies to the changeable-type network variable. This configuration property
can be used to inform network tools of the maximum type length supported by
the changeable-type network variable. This value is a constant, so declare this
configuration property with the const modifier. For example, the following code
adds a SCPTmaxNVLength configuration property to the example in the
previous step:
SCPTnvType cp_family cp_info(reset_required) nvType;
const SCPTmaxNVLength cp_family nvMaxLength;
network output changeable_type SNVT_volt_f nvo1
 nv_properties {nvType,
 nvMaxLength=sizeof(SNVT_volt_f)};

5 Implement code in your Neuron C application to process changes to the
SCPTnvType value. The required code is described in the Neuron C
Programmer’s Guide.

2.7.2.3. Network Variable Naming Conventions
The programmatic name of a network variable may be prefixed with its storage
class, as defined below. For compactness, underscores are typically not used and all
characters are typically lowercase, except the first character of a word. The following
conventions are used, but not required:

� network variable input: nviXxxxxxxxxxxxx

� network variable output: nvoXxxxxxxxxxxxx

� network variable output (ROM): nroXxxxxxxxxxxxx

� configuration network variable input: nciXxxxxxxxxxxxx

Due to the limitation of 16 characters for names of the network variables and
configuration properties, there is a convention for abbreviations. The following list
represents some typical abbreviations, but it is not meant to be all-inclusive:

Actual Act
Calendar Cal
Clear Clr
Continuous Cont
Delay Dly
Device Dev
Discrete Disc
Electric Elec
Feedback Fb
Floating-point f
Frequency Freq
Hardware Hw
Increment Inc

28 LONMARK Interoperability Guidelines

Inhibit Inh
Input In
Level Lev
Maximum Max
Micrometer Micr
Minimum Min
Parts-per-million Ppm
Object Obj
Output Out
Position Pos
Range Rnge
Request Req
Rate Rt
Resistance Res
Source Src
Standby Stby
String Str
Table Tbl
Time T
Translation Trans
Volume Vol
Watt-hour Whr

2.7.3. Configuration Properties
A configuration property (CP) is a data item that, like a network variable, is part of the
device interface for a device. Configuration properties characterize the behavior of a
device in the system. Network tools manage this attribute and keep a copy of its
value in a database to support maintenance operations. If a device fails and needs to
be replaced, the configuration property data stored in the database is downloaded
into the replacement device to restore the behavior of the replaced device in the
system.

Configuration properties facilitate interoperable installation and configuration tools
by providing a well-defined and standardized interface for configuration data. Each
configuration property type is defined in a resource file that specifies the data
encoding, scaling, units, default value, range, and behavior for configuration
properties based on the type. A rich variety of standard configuration property types
(SCPTs) are defined in the standard resource file set described in Chapter 3, Resource
Files. SCPTs provide standard type definitions for commonly used configuration
properties such as dead-bands, hysteresis thresholds, and message heartbeat rates.
You can also create your own user configuration property types (UCPTs) that are
defined in resource files you create.

A configuration property must apply to one of the following items:

� A single network variable,

� A single functional block,

� A series of network variables,

Device Interfaces 29

� A series of functional blocks,

� A compilation of network variables,

� A compilation of functional blocks,

� The entire device.

The item to which the configuration property applies is known as the application set
of the configuration property. The application set cannot contain more than one of
the items in the list above.

Each configuration property within its specified application set must be based on a
unique configuration property type (SCPT or UCPT). For example, if a functional
block has three output network variables, each requiring an independent maximum
send-time configuration property, then the maximum send-time properties must be
declared to apply to the network variables within the functional block, as shown in
Example B of Figure 8. In Example A, declaring them to apply to the functional
block would be ambiguous because it would be impossible for a network tool to
know in an interoperable way which maximum send-time value controlled which
network variable within the functional block. As described in the next section,
configuration properties with compatible application sets may be shared, so a single
SCPTmaxSendTime configuration property may be shared among nv1, nv2, and nv3
in Example B.

Figure 8: CP Application to NVs vs. FBs

Manufacturer-defined user configuration properties are permitted because the
configuration data for a given functional block is often implementation-specific. It is

30 LONMARK Interoperability Guidelines

also permitted that modification of these user configuration data be necessary for the
successful commissioning of the device. Any user configuration properties
necessary to successfully commission the device must either be defined with
documentation and machine-readable LONMARK resource files as described in
Chapter 3, or must be modifiable with a passive configuration tool as defined in 4.2,
Passive Configuration Tools.

Configuration properties that are members of functional blocks may be implemented
as arrays. For example, a configuration property array may be used to create an
event schedule or a translation table for the linearization of sensor data. The
functional profile contains information for each member configuration property,
whether implementation as an array is permitted, required, or disallowed. The
functional profile also defines the valid array boundaries for each member
configuration property that permits array implementation.

Guideline 2.7.3A: If user configuration properties must be modified
for successful commissioning of a certified
device, those configuration properties must be
defined with LONMARK resource files and user
documentation as described in Chapter 3, or a
passive configuration tool must be provided as
described in 4.2, Passive Configuration Tools.
The documentation and resource files, if any,
must be supplied at the time the device is
certified. The passive configuration tool, if any,
must be available at the time the device is
certified.

Guideline 2.7.3B: If a passive configuration tool is not required for
the successful commissioning of a certified
device, then any and all configuration information
required to be modified to successfully
commission the device shall be implemented and
exposed via LONMARK configuration properties
with user documentation.

2.7.3.1. Configuration Property Distribution Methods
When a configuration property or configuration property array applies to multiple
functional blocks or multiple network variables, there are two distribution methods
that determine how the configuration property or elements of the array are
distributed among the applicable functional blocks or network variables.

The first method is called CP sharing. Using this method, the entire configuration
property or CP array applies to all the specified functional blocks or network

Device Interfaces 31

variables. For example, given a configuration property array, cpMyCps[4], here is
the disbursement of the entire array to four functional blocks using CP array sharing:

cpMyCps[0] Æ functional block 0
cpMyCps[1] Æ functional block 0
cpMyCps[2] Æ functional block 0
cpMyCps[3] Æ functional block 0

cpMyCps[0] Æ functional block 1
cpMyCps[1] Æ functional block 1
cpMyCps[2] Æ functional block 1
cpMyCps[3] Æ functional block 1

cpMyCps[0] Æ functional block 2
cpMyCps[1] Æ functional block 2
cpMyCps[2] Æ functional block 2
cpMyCps[3] Æ functional block 2

cpMyCps[0] Æ functional block 3
cpMyCps[1] Æ functional block 3
cpMyCps[2] Æ functional block 3
cpMyCps[3] Æ functional block 3

The second method is called CP dividing. CP dividing only applies to CP arrays; a
singular CP is atomic and may not be divided. Using this method, each element of a
CP array is applied to a corresponding element of the applicable functional blocks or
network variables. For example, given a configuration property array, cpMyCps[4],
here is the disbursement of the individual elements of the array to four functional
blocks using CP array dividing:

cpMyCps[0] Æ functional block 0

cpMyCps[1] Æ functional block 1

cpMyCps[2] Æ functional block 2

cpMyCps[3] Æ functional block 3

This avoids having a separate self-documentation string for every element in the
array. This technique can also result in substantial memory and code-space savings,
though commissioning time is typically increased due to a potentially less efficient
memory layout. CP array dividing cannot be used unless the CP array has exactly
the same number of elements as the number of functional blocks or network
variables to which the CP applies.

CP sharing can be used with both a series of network variables or functional blocks
and a compilation of network variables or functional blocks. CP dividing cannot be
used with compilations.

The implementation of multiple members of a functional profile may share the same
configuration property unless the functional profile documentation specifies that

32 LONMARK Interoperability Guidelines

they cannot be shared. For example, a profile may define nvo1, nvo2, and nvo3
outputs, each with a mandatory SCPTmaxSendTime CP member that applies to it
called cpMaxSendTime1, cpMaxSendTime2, and cpMaxSendTime3. A functional
block implementation of this profile may implement a single SCPTmaxSendTime CP
that is shared among nvo1, nvo2, and nvo3, and still fulfill the requirement to
implement all mandatory members of the profile.

2.7.3.2. Configuration Property Implementation Methods
You can implement a configuration property using one of two different methods.
The first, called a configuration network variable, uses a network variable to implement
the configuration property. This has the advantage of enabling the configuration
property to be modified by another LONWORKS device, just like any other network
variable. It also has the advantage of having the network variable event mechanism
available to provide notification of configuration property updates to the
application.

The disadvantages of configuration network variables are that they are limited to a
maximum of 31 bytes each, and a Neuron Chip or Smart Transceiver hosted device is
limited to a maximum of 62 network variables.

The second method of implementing configuration properties uses configuration files
to implement the configuration properties for a device. Rather than being separate
externally-exposed elements of data, all configuration properties implemented
within configuration files are combined into one or two blocks of data called value
files. A value file consists of configuration property records of varying length
concatenated together. Each value file must fit as contiguous bytes into the memory
space of the device that is accessible by the application. When there are two value
files, one contains writeable configuration properties and the second contains read-
only data. To permit a network tool to access individual elements of data in the
value file, there is also a template file consisting of an array of text characters that
describes the elements in the value files.

The advantages of implementing configuration properties as configuration files are
that there are no limits on configuration property size or the number of
configuration properties—except as constrained by the available memory space on
the device and the maximum file size for the LONWORKS File Transfer Protocol
(FTP). The disadvantages are that other devices cannot connect to or poll a
configuration property implemented as a configuration file—typically requiring a
network tool to modify a configuration property implemented within a
configuration file—and no events are automatically generated when a configuration
property implemented within a configuration file is updated. The application can
force notification of updates by requiring network tools to reset the device, disable
the functional block, or take the device offline when a configuration property is
updated. Alternatively, the application can also force notification by implementing

Device Interfaces 33

configuration-file access via the LONWORKS FTP and monitoring the transfer. This
option requires additional code space for the FTP-server code.

Table 1 summarizes the advantages and disadvantages of the two implementation
methods. For a given configuration property, the developer must choose one of
these methods. However, both methods can be implemented on a device, just not
for the same configuration property.

Table 1. CP Implementation Trade-offs

Configuration NV CP Within a Configuration File

� Limited to 31 bytes in length � May be of any length

� Uses one network variable for
each configuration property
declared

� Does not require a network
variable

� Application notified of updates via
NV update event

� Requires alternate update
notification method

Guideline 2.7.3.2: A certified device shall implement a given
configuration property as either a configuration
network variable or as an element of a
configuration file.

2.7.3.3. Configuration-File Access Methods
When configuration properties are implemented within configuration files, you must
provide a method for a network tool to access the configuration file. You may
provide one of the following three access methods:

� Direct memory read/write,

� FTP with random and sequential access,

� FTP with sequential access.

The direct memory read/write access method enables a network tool to read and write
configuration files using ANSI/EIA/CEA 709.1 Read Memory and Write Memory
network-management messages. This method does not require file transfer code on
the device, and is therefore the preferred method for applications running on
Neuron Chips or Smart Transceivers—as long as the configuration file fits entirely
within the standard memory space of the Neuron Chip or Smart Transceiver.

The File Transfer Protocol (FTP) with random and sequential access method enables a
network tool to read and write configuration files using the LONWORKS File Transfer
Protocol, with both random and sequential access to any blocks within the

34 LONMARK Interoperability Guidelines

configuration file. This method requires file transfer code on the device, but can be
used with any host processor and can also be used for Neuron Chip or Smart
Transceiver hosted devices when the configuration file does not fit in the processor’s
standard memory space.

The File Transfer Protocol (FTP) with sequential access method is identical to the FTP
with random and sequential access method, with the exception that random access
to blocks within the configuration file is not provided. This method is used when an
FTP access method is required or preferred, and the host processor does not have
sufficient application memory space to implement random access. It can be
considerably more inefficient than the other two access methods and should only be
used if none of the other two access methods can be provided.

Network tools determine which access method to use based on interfaces provided
in the Node Object functional block. See the Node Object Functional Profile for details
on these interfaces. See Echelon’s LONWORKS File Transfer Protocol Engineering
Bulletin (005-0025-01) for details on implementation of the File Transfer Protocol.

Guideline 2.7.3.3: If a certified device implements any configuration
properties within configuration files, then one and
only one of the following access methods shall be
provided as described in 2.7.3.3, Configuration-
File Access Methods: direct memory read/write,
FTP with random and sequential access, or FTP
with sequential access.

2.7.3.4. Configuration Property Flags
Each configuration property on a device may specify optional flags that are used to
notify a network tool of whether or not a configuration property can be modified,
and if so, when it can be modified. These flags are optional. If a configuration
property is declared without any flags, a network tool may assume that the
configuration property can be modified at any time.

Constant Specifies a configuration property that can
never be changed by a network tool.
However, network tools may write such
configuration properties when they reside in
a writeable value file as long as the value is
not changed. A network tool may do this as
part of an update to another configuration
property adjacent to the constant value.
Configuration properties with the Constant
flag but without the Device-Specific flag can
be assumed to have the same value on all
devices using the same standard program
ID.

Device Interfaces 35

Device-Offline Specifies that a network tool must take this
device offline, or ensure the device is already
offline, before modifying the configuration
property. This flag or the FB-Disabled flag is
recommended for a configuration property
implemented within a configuration file with
direct memory read/write access if the
application requires update notification, or if
the application cannot tolerate updates from
the network at the same time the application
is reading the configuration property.
This flag should not be used for configuration
properties implemented within configuration
files that are accessed via FTP, and network
tools should ignore this flag for such
configuration properties. This is because a
device cannot transfer configuration property
values via FTP while offline. In fact, an
offline application must be placed into the
online state for the duration of any FTP
configuration property operations.

Device-Specific Specifies a configuration property that must
always be read from the device instead of
relying upon the value in the device interface
file or a value stored in a network database.
Network tools must never change this
property’s value except as a side effect of a
new program download. This is used for
configuration properties that must be
exclusively managed by the device, such as
a setpoint that is updated by a local operator
interface on the device. This flag is not used
for configuration properties that are updated
both by the device application as well as by
network tools. Such configuration properties
must provide an alternate means to
determine which copy of the configuration
property (the device copy or the network
database copy) is current, or an alternate
means to keep both copies synchronized.

FB-Disabled Specifies that a network tool must disable the
functional block containing the configuration
property, take the device offline, or ensure
that the functional block is already disabled
or the device is already offline, before
modifying the configuration property. This
flag or the Device-Offline flag is
recommended for a configuration property
implemented within a configuration file with
direct memory read/write access if the
application requires update notification, or if
the application cannot tolerate updates from
the network at the same time the application

36 LONMARK Interoperability Guidelines

is reading the configuration property.
A network tool may elect not to disable a
functional block before modifying a
configuration property with the FB-Disabled
flag if that device is already offline and can
be updated while offline. This is allowed
because an offline device has all its
functional blocks implicitly disabled, and
because a functional block cannot be directly
disabled when the device is already offline.

Manufacturing-Only Specifies a factory setting that may be read
or written when the device is manufactured,
but is not normally (or ever) modified in the
field. In this way, a standard installation tool
may be used during manufacture to calibrate
a device, while a field installation tool would
observe the flag in the field and prevent
modification of the value, or optionally require
a password to modify the value.

Reset-Required Specifies that a network tool must reset the
device after changing the value of the
configuration property. If multiple
modifications of configuration properties are
being made at the same time, then one reset
can be completed in lieu of having to reset
the device the same number of times as
Reset-flagged configuration properties were
modified.

2.7.3.5. Implementing a Configuration Property
To implement a configuration property on a device and associate it with a network
variable, a functional block, or the device itself, you can create the self-
documentation data or configuration files manually as described in Appendix C.
Alternatively, if you are developing an application using the Neuron C Version 2
programming language, you can implement a configuration property as described in
this section.

Guideline 2.7.3.5: A certified device that includes configuration
properties within the interoperable interface shall
include configuration property documentation
strings that declare the configuration properties
and map them to the entire device; one or more
network variables; or, one or more functional
blocks declared on the device. These strings may
be created by the Neuron C Version 2 (or newer)
compiler as described in 2.7.3.5, Implementing a
Configuration Property, or may be created
manually as described in Appendix C.

Device Interfaces 37

To implement a configuration property using Neuron C Version 2, you must first
declare the configuration property, and then associate the configuration property
with a network variable, functional block, or the device.

The syntax for declaring a configuration network variable is identical to the syntax
for declaring an input network variable, with the addition of a config_prop
keyword. The config_prop keyword may be abbreviated to cp. The complete
syntax is shown below (see the Neuron C Reference Guide for a complete description
of the syntax).

network input [netvar-modifier] [class] type config_prop [cp-modifiers]
[connection-info] identifier [[array-bound]] [= initializer-list] ;

The syntax for declaring a configuration property to be implemented within a
configuration file is shown below (see the Neuron C Reference Guide for a complete
description of the syntax).

[const] type cp_family [cp-modifiers] identifier [= initial-value] ;

EXAMPLE
SCPTgain cp_family cpGain = { 2, 3 };

The cp-modifiers specify optional configuration property flags described in Section
2.7.3.3 and range modifiers specified in Section 2.7.3.6. If included, the syntax for the
configuration property flags is as follows:

cp_info(cp-option-list)

The cp-option-list is a comma-separated list of keywords for each specified
configuration property flag as follows:

Constant const (this is not a cp-modifier, it is a class
modifier)

Device-Offline offline

Device-Specific device_specific

FB-Disabled object_disabled

Manufacturing-Only manufacturing_only

Reset-Required reset_required

The cp_family declaration does not create an instance of the configuration property
whereas the configuration network variable declaration does. Instances of the
configuration property declared by the cp_family declaration are created when the
CP family is associated with a network variable, functional block, or the device.

When declaring either a configuration network variable or a CP family, the type
must be a configuration property type defined within a LONMARK resource file as
described in Chapter 3, Resource Files.

38 LONMARK Interoperability Guidelines

To associate a configuration property with a network variable, functional block, or
the device, include the configuration property name in a property list for the network
variable, functional block, or device. A property list is a list of configuration
properties associated with a network variable, functional block, or device. The
syntax for a property list is one of the following:

 nv_properties {property-reference-list}

 fb_properties {property-reference-list}

 device_properties {property-reference-list} ;

To associate a configuration property with a network variable, the nv_properties
clause must immediately follow the network variable declaration, preceding the
closing semicolon. To associate a configuration property with a functional block, the
fb_properties clause must immediately follow the fblock declaration, preceding the
closing semicolon. The device_properties statement is a file-scope statement that
may appear anywhere within a Neuron C Version 2 application. A Neuron C
program may have multiple device-property lists. However, you cannot have more
than one configuration property of any given type that applies to the device.
Likewise, you cannot have more than one configuration property of any given type
within the same fb_properties or nv_properties clause.

The property-reference-list contains a list of property references, separated by commas.
Each property reference must be the name of a previously declared CP family or the
name of a previously declared configuration network variable, using the name
supplied as the identifier in the configuration property declaration. If the
configuration network variable or CP family implements an array that is referenced
in a device_properties clause or in an nv_properties clause that defines properties of
a network variable that is not a member of a functional block, only a single array
element may be chosen. An array index must be given as part of the property
reference in that case. For configuration properties that implement arrays and that
are referred to in an fb_properties clause, or that are referred to in an nv_properties
clause that itself defines details of a network variable that implements a member of a
functional block, CP sharing or CP dividing may be used as discussed earlier in this
document. In this case, the CP array may also be referenced without the array index,
allowing the entire CP array to apply to its application set as a whole.

Following the property-identifier, there may be an optional initializer, and an optional
range modifier. These optional elements may occur in either order if both are given.
These elements are described in the next section.

2.7.3.6. Configuration Property Initializers and Range Modifiers
If present, the property-list initializer for a CP-family member specifies the initial
value for the CP-family instance created by the property list. The initializer
overrides any initializer provided at the time of declaration of the CP family; thus,
using this mechanism, some CP-family members can be initialized specially, with the
remaining CP-family members having a more generic initial value.

Device Interfaces 39

If present, the range modifier allows you to specify a range-modification string that
modifies the valid range for the configuration property defined by the resource file
as described in Chapter 3. The range-modification string can only be used with
fixed-point and floating-point types, and consists of a pair of either fixed-point or
floating-point numbers delimited by a colon (“:”). The first number is the low limit
while the second number is the high limit. If either the high limit or the low limit
should be the maximum or minimum specified in the configuration property
definition (from the functional profile) or specified in the configuration property
type definition (from the resource file set outside of the functional profile), then the
field is empty to specify this. In the case of a structure or an array, if one member of
the structure or array has a range modification, then all members must have a range
modification specified. In this case, each range modification pair is delimited by a
vertical bar (“|”). To specify no range modification for a member of a structure (that
is, revert to the default for that member), encode the field as a single terminating
vertical bar with no other characters. Use the same encoding for structure members
that cannot have their ranges modified due to their data type. Empty encoding is
only allowed for members of structures. Whenever a member of a structure is not a
fixed or floating-point number, its range may not be restricted. Instead, the default
ranges must be used. In the case of an array, the specified range modifications apply
to all elements of the array.

For example, to specify a range modification for a 3-member structure where the
second member has the default ranges, and the third member only has an upper-
limit modification, the range-modification string is encoded as: ʺn:m||:mʺ. Positive
values for range modifications and their exponents (if any) are implicit, while
negative numbers and negative exponents must be explicitly designated as such
with a preceding hyphen (“–”). Floating-point numbers use a period (“.”) for the
decimal point. Fixed-point numbers must be expressed as signed 32-bit integers.
Floating-point numbers must be within the range of an IEEE 754 32-bit floating-point
number. To express an exponent, precede the exponent by an “e” or an “E” and then
follow with an integer value. For example, to represent the lowest floating-point
value possible, the encoding would be the following:

-3.40282E38

Both initial values and range modifiers may be used. Development and network
tools must apply them in the following order:

1 Values provided with the CP reference within an fb_properties, nv_properties,
or device_properties clause, if any.

2 Values provided with the declaration of the CP family, if any.

3 Values provided with the functional profile template definition in the resource
files, if given.

4 Values provided with the configuration property or network variable type that is
used with the functional profile, if given.

40 LONMARK Interoperability Guidelines

5 Initial values are considered to be zero unless defined elsewhere (in any of the
places listed in this list above). Range modifiers default to the natural minimum
and maximum value for the underlying base data type, unless defined in any of
the items listed above.

2.7.3.7. Configuration Property Examples
Figure 9 demonstrates example configuration property declarations for
configuration properties that apply to network variables, and that apply to entire
functional blocks. The nv_properties and fb_properties Neuron C Version 2
programming keywords are used to make the associations, respectively. The solid
arrows relate the functional profile network variable member definitions to the
network variable references in the source code. The dashed arrows related the
functional profile configuration property member definitions to the configuration
property declarations in the source code. The nvoFixPtTemp and nciTmpOffset
functional profile members are optional and are not implemented.

Figure 9: fblock Configuration Property Member References

Device Interfaces 41

The complete code for the declaration in Figure 9 is as follows:
SCPTmaxSendTime cp_family cpMaxSendTime;
SCPTminDeltaTemp cp_family cpMinDelta;
SCPTminSendTime cp_family cpMinSendTime;

network output SNVT_temp_p nvoTemperature
nv_properties {
 cpMinDelta
};

network output SNVT_temp_f nvoTempFloat;

fblock SFPThvacTempSensor {
 nvoTemperature implements nvoHVACTemp;
 nvoTempFloat implements nvoFloatTemp;
} fbTempSensor external_name("Temperature Sensor")
fb_properties {
 cpMaxSendTime,
 cpMinSendTime
};

2.8. Device and Functional Block Versioning
Versioning is an important part of upgrading and verifying systems. It can be useful
information for a person tasked with such maintenance. Every certified device has a
standard program ID (SPID). In many cases, when the device interface changes, the
spid must be modified to indicate that the device is not the network-interface
equivalent of other devices on the network. This convention performs basic device
versioning. However, not all changes to a device interface require the SPID of a
device to change. Additionally, it is possible to change the program within a device
without changing its device interface, which also does not require the SPID to
change. Details of allowable changes can be found in Appendix F.

A more flexible method of device versioning can be accomplished with the use of the
SCPTdevMajVer and SCPTdevMinVer standard configuration property types.
These two standard configuration property types are unsigned-short values with a
range of 0–255 and a default value of 0. A configuration property based on
SCPTdevMajVer must always specify the Constant flag, while a configuration
property based on SCPTdevMinVer must always specify the Device-Specific flag.
The Constant flag means that all devices with the same program ID will have the
same value, while the Device-Specific flag means that devices with an identical
program ID may have different values for this configuration property. See 2.7.3.3,
Configuration-File Access Methods, for a complete list of flags and their values.

The presence of these configuration properties within a device defines the major
version and minor version of the device. The major version number must be
incremented when the network interface for the device changes, while the minor
version number must be incremented when the network interface remains the same,
but the device has a different behavior.

42 LONMARK Interoperability Guidelines

These device-versioning configuration properties are optional configuration
properties of the Node Object functional profile. They should not be used outside of
a Node Object functional block except for when the device does not implement a
Node Object functional block.

For devices with multiple functional blocks declared within them, it is useful to
know which functional blocks have changed. To support the versioning of
individual functional blocks, the SCPTobjMajVer and SCPTobjMinVer configuration
property types are defined. These two standard configuration property types are
unsigned-short values with a range of 0–255 and a default value of 0. A
configuration property based on SCPTobjMajVer must always specify the Constant
flag, while a configuration property based on SCPTobjMinVer must always specify
the Device-Specific flag. The Constant flag means that all devices with the same
program ID will have the same value, while the Device-Specific flag attribute means
that devices with an identical program ID may have different values for this
configuration property. The presence of these configuration properties within a
functional block defines the major version and minor version of the functional block.
The major version number must be incremented when the network interface for the
functional block changes, while the minor version number must be incremented
when the network interface remains the same, but the functional block has a
different behavior.

Guideline 2.8: If SCPTdevMajVer, SCPTdevMinVer,
SCPTobjMajVer, or SCPTobjMinVer configuration
properties are included on a certified device, they
shall be implemented as described in 2.8, Device
and Functional Block Versioning.

2.9. Device Interface (XIF) File
The device interface (XIF) file is a standalone file that documents the device interface
for a type of device. It also documents the default values for all the configuration
properties on the device. The XIF file is an important component of a device’s
definition and must be submitted with the device’s resource files when a device is
submitted for certification.

The device interface file provides a summary and documentation of the device
interface for a device with a specified SPID. The device interface file is created
automatically by the LonBuilder® and NodeBuilder development tools, or it may be
created manually based on the specifications in the LONMARK Device Interface File
Reference Guide.

Device Interfaces 43

Guideline 2.9A: The device interface for a certified device shall be
documented in a version 4.0 or newer device
interface file as described in 2.9, Device Interface
(XIF) File. The device interface file shall be
submitted with the certification application.

Guideline 2.9B: The device interface for a certified device shall
include default values for all configuration
properties as described in the LONMARK Device
Interface File Reference Guide.

Resource Files 45

3

Resource Files

Resource files are files that define the functional profiles and types referenced
by the device interface for one or more LONWORKS devices. These files allow
network tools—such as installation tools and operator-interface applications—
to interpret data produced by a device and to correctly format data sent to a
device. They also help a system integrator or system operator to understand
how to use a device and to control the functional blocks on a device.
Resource files are available that define the standard components used in
device interface definitions. Device manufacturers must create user resource
files for any user-defined components used by their device interfaces.

46 LONMARK Interoperability Guidelines

3.1. Resource File Definitions
Resource files are used to publish definitions for both standard and manufacturer-
defined resources. Standard resources include standard functional profiles (also called
LONMARK profiles), standard network variable types (SNVTs), standard configuration
property types (SCPTs), and standard enumeration types. Manufacturer-defined
resources include user functional profiles, user network variable types (UNVTs), user
configuration property types (UCPTs), and user enumeration types.

Resource files are grouped into resource file sets, where each set defines functional
profiles, network variable types, configuration property types, enumeration types,
strings, and formats for specified device types. The range of device types that a
resource file set applies to is called the scope of the resource file set. For example, the
scope may specify that the resource file set applies to an individual device type or to
all device types. The available scopes are defined in 3.3, Managing Resource Files.

Each resource file set may contain definitions for the following resources:

Network Variable Types Type information for network variables.
This information includes the size, units,
scaling factors, and type category (float,
integer, signed, etc) for each type.

Configuration Property Types

Type information for configuration
properties. This information includes the
size, units, scaling factors, and type
category (float, integer, signed, etc) for
each type.

Functional Profiles Functional profiles define a template for
functional blocks. Each functional profile
is a collection of network variables and
configuration properties designed to
perform a single function on a device.

Enumeration Types An enumeration type is a list of numerical
values, each associated with a mnemonic
name.

Language Strings Language-specific strings that are
referenced by type definitions, functional
profiles, and self-documentation strings.

Formats Formatting instructions for network
variable and configuration property types.

These resources are described in more detail in the following sections.

Resource Files 47

3.1.1. Type Definitions
A type definition may be a network variable, configuration property, or enumeration type
definition. Network variable and configuration property types specify the data type,
size, units, and scaling factors for the type. The data type may be a base type, an
enumeration type, a structure type, a union type, or a reference to another network
variable type.

3.1.1.1. Base Types
The following base types are available:

� Signed character (8 bits),

� Unsigned character (8 bits),

� Signed short (8 bits),

� Unsigned short (8 bits),

� Signed long (16 bits),

� Unsigned long (16 bits),

� Signed quad (32 bits),

� IEEE 754 single-precision floating point (32 bits).

The base types define size in bits, but—with the exception of floating point—do not
define fractional values, nor do they define resolution and upper/lower limits.
Limits are imposed by the range of values that can be represented using the number
of bits of the type.

3.1.1.2. Enumeration Types
An enumeration type is a list of numerical values, each associated with an enumerator
name. If a network variable or configuration property type contains an
enumeration, the definitions of the enumerated values are maintained separately as
an enumeration type. Enumeration types are defined in a resource file with a .typ
extension (along with network variable and configuration property types), and may
also be defined in a separate C header file (.h extension). The C header file is
typically required by development tools, but not by other network tools.

By convention, enumeration type names use all lower case, with each word in the
name separated by an underscore, and ending with “_t” (for example:
count_control_t). Enumeration type names are limited to 64 characters, including
the “_t” suffix characters.

By convention, all the enumerator names within an enumeration type use a
common, unique, prefix. The enumerator names use all upper case, with words
separated by underscores (for example: DCM_SPEED_CONST and
DCM_PRESS_CONST). Enumerator names are limited to 64 characters, including
the unique prefix.

48 LONMARK Interoperability Guidelines

Each of the numerical values for an enumeration type is a signed 8-bit value. The
range is –126 to 127. As convention, a value of –1 (0xFF) is reserved for an invalid or
undefined value, and a value of 0 is typically used for the default value. The –1
(0xFF) value is always named <Prefix>_NUL.

The standard enumeration types are documented in the LONMARK SNVT and SCPT
Master List.

3.1.1.3. Structure Types
A structure type defines an aggregate data type that consists of one or more fields.
For example, the SNVT_date_cal network variable type contains 3 fields for the year,
month, and day. Each field of a structure type may itself be a base type, a bitfield
with a width of 1–8 bits, an enumeration type, another structure type, a union type,
or a reference to another network variable type. There is no specified, programmatic
naming convention for structures.

When used as the data type for network variables, all fields of a structure are
updated when a network variable value update is sent on the network. There is no
means to transmit an individual field of a network variable structure.

Structure type names are limited to 48 characters; but, if used as the data type of a
network variable, they are limited to 16 characters. Field names are also limited to
48 characters.

3.1.1.4. Union Types
A union type defines an aggregate data type that consists of one or more fields.
Unlike a structure type, the start of each of the fields of a union type overlaps. Like a
structure type, each field may itself be a base type, a structure type, a union type, or
a reference to another network variable type. There is no specified, programmatic
naming convention for unions.

To allow for a network tool to determine the active portion of the union, a union is
typically defined as a field within a structure, where the first field of the structure is
a base-type value that is used as a selector for the union. This enables a format to be
defined for the structure that uses one or more ternary operators to select the
appropriate format based on the selector value.

EXAMPLE

The SNVT_file_status standard network variable type (SNVT) is defined as
follows:

Resource Files 49

typedef struct {
 file_status_t status;
 unsigned long number_of_files;
 unsigned long selected_file;
 union adr {
 struct descriptor {
 signed char file_info[16];
 signed quad size;
 unsigned long type;
 };
 struct address {
 unsigned short domain_id[6];
 unsigned short domain_length;
 unsigned short subnet;
 unsigned short node;
 };
 };
} SNVT_file_status;

The status field allows a network tool to determine the active portion of the adr
union. The status field is defined as an enumeration with the following values:

typedef enum file_status_t {
 /* 0 */ FS_XFER_OK,
 /* 1 */ FS_LOOKUP_OK,
 /* 2 */ FS_OPEN_FAIL,
 /* 3 */ FS_LOOKUP_ERR,
 /* 4 */ FS_XFER_UNDERWAY,
 /* 5 */ FS_IO_ERR,
 /* 6 */ FS_TIMEOUT_ERR,
 /* 7 */ FS_WINDOW_ERR,
 /* 8 */ FS_AUTH_ERR,
 /* 9 */ FS_ACCESS_UNAVAIL,
 /* 10 */ FS_SEEK_INVALID,
 /* 11 */ FS_SEEK_WAIT,
 /* -1 */ FS_NUL = -1
} file_status_t;

The format definition for the SNVT_file_status type uses a ternary operator to
select one of two formats based on the value of the status field as follows:

50 LONMARK Interoperability Guidelines

SNVT_file_status: text(("%m,%d %d ",
 status,
 number_of_files,
 selected_file),
 ((status == 1) ? ("%d %d %s",
 adr.descriptor.size,
 adr.descriptor.type,
 adr.descriptor.file_info) :
 ("%d <%x %x %x %x %x %x> %d %d",
 adr.address.domain_length,
 adr.address.domain_id[0],
 adr.address.domain_id[1],
 adr.address.domain_id[2],
 adr.address.domain_id[3],
 adr.address.domain_id[4],
 adr.address.domain_id[5],
 adr.address.subnet,
 adr.address.node)));

Union type names are limited to 48 characters; but if used as the data type of a
network variable, then they are limited to 16 characters.

3.1.1.5. Network Variable Type Definitions
A network variable type definition specifies the data type, size, units, and scaling
factors for a network variable type. Even though it is possible to declare a network
variable directly using a base type, such a declaration cannot be used for certified
devices—except in the case of a configuration network variable. Network variable
types are defined in a resource file with a .typ extension.

Standard network variable type (SNVT) names always begin with a “SNVT_” prefix
and are always lowercase (e.g.: SNVT_temp_p). By convention, user network
variable type names begin with “UNVT_” and are lowercase (e.g.: UNVT_my_type).

Names of network variable types are limited to 16 characters, including the five
prefix characters.

The type for a SNVT field may be based on a SNVT, but cannot be based on a user
network variable type (UNVT). A UNVT field may be based on a UNVT or SNVT.

The standard network variable types are documented in the LONMARK SNVT and
SCPT Master List.

3.1.1.6. Configuration Property Type Definitions
A configuration property type definition specifies the data type, size, units, and scaling
factors for a configuration property type. Configuration property types are defined
in a resource file with a .typ extension (this is the same file used for network variable
types).

A network variable type may be used as the data type of a configuration property
type, but this is not required. There is no requirement to create a new network

Resource Files 51

variable type for a new configuration property type. Standard configuration
property types (SCPTs) and SCPT fields may be based on SNVTs, base types, or
enumerations, but they cannot be based on UNVTs. User configuration property
types (UCPTs) and UCPT fields may be based on UNVTs, SNVTs, base types, or
enumerations.

Standard configuration property type names always begin with a “SCPT” prefix and
are always a combination of uppercase and lowercase characters (e.g.:
SCPTmaxPressureSetpoint). By convention, user configuration property-type names
begin with a “UCPT” prefix and are a combination of uppercase and lowercase
characters (e.g.: UCPTmyConfigurationType).

Names of configuration property types are limited to 63 characters, including the
four prefix characters.

The standard configuration property types (SCPTs) are documented in the LONMARK
SNVT and SCPT Master List.

3.1.2. Functional Profiles
A functional profile defines a template for a functional block. Each functional profile
consists of a profile description and a specified set of network variables and
configuration properties designed to perform a single function on a device. The
network variables and configuration properties specified by the functional profile
are called the functional profile members. A functional profile specifies whether or not
each functional profile member is mandatory or optional. When a functional block
implements a functional profile, it must implement all mandatory functional profile
members defined by the functional profile, and it may implement some, all, or none
of the optional functional profile members. A functional block may also add
implementation-specific members that are not defined in the functional profile, but
this is not recommended for certified devices. As described in 2.7.3.1, Configuration
Property Distribution Methods, multiple configuration property members may share a
single configuration property implementation on a device as long as they are the
same type, are part of a compatible application set, and the sharing is not prohibited
by the functional profile documentation.

Functional profiles are defined in a resource file with a .fpt extension. Functional
profiles are also called functional profile templates.

In addition to the functional profile members, a functional profile also specifies the
semantic meaning of the information being communicated. Thus, a functional
profile provides additional information on usage, beyond the type information
specified by a network variable or configuration property type.

Functional profiles that have been approved and published by the LONMARK
Interoperability Association are called standard functional profiles. They are also
called LONMARK profiles. The complete set of LONMARK profiles is available on the
LONMARK Web site at www.lonmark.org. The primary function of a certified device

http://www.lonmark.org/

52 LONMARK Interoperability Guidelines

must be implemented using one or more LONMARK profiles. Developers can choose
the profiles that best fit the functions of the device being developed, with the
exception that a functional profile identified as obsolete on the LONMARK Web site
may not be used for a new or recertified device, unless otherwise specified on the
LONMARK Web site. If the appropriate LONMARK profiles are not available for a
particular device, developers can work with a LONMARK task group to propose a
new LONMARK profile as described in Appendix E. Information on how to propose
a new LONMARK profile, as well as the templates to use, is provided in the
profile.zip archive also available on the LONMARK Web site.

Functional profiles that have not been approved and published by the LonMark
Interoperability Association are called user functional profiles. A user functional
profile cannot be used to implement the primary function of a certified device.

Guideline 3.1.2A: The primary function of a certified device shall be
implemented with one or more functional blocks
that conform to one or more LONMARK profiles as
defined in 3.1.2, Functional Profiles.

Guideline 3.1.2B: Each functional block shall, as a minimum,
implement all the functional profile’s mandatory
network variables and configuration properties.
Any optional members implemented by the
functional block shall be implemented as
specified in the profile; with the exception that
the application set of an optional configuration
property may be changed.

If an optional configuration property is not implemented in a functional block, then
it is recommended that the device follow the specified default value, whenever
possible, to ensure consistent behavior.

3.1.2.1. Functional Profile Names
Each functional profile must have a name that is unique within its resource file set.
The name must start with “SFPT” for standard profiles and “UFPT” for user profiles.
The name may not contain spaces. By convention, there is no underscore following
the “SFPT” or “UFPT” prefix; the first letter after the prefix is lower case; and the
name uses mixed case. For example, “SFPToccupancySensor” follows this
convention. Functional profile names are limited to 64 characters, including the
four-character prefix. A functional profile name may include underscores, but
cannot use spaces or any other special characters.

Resource Files 53

3.1.2.2. Functional Profile Numbers
Each functional profile has a unique number, called the functional profile number or
the functional profile key, which uniquely identifies the profile. The functional profile
number need only be unique within the scope of the functional profile as described
in 3.3, Managing Resource Files.

The LONMARK Association assigns profile numbers to standard functional profiles.
For example, the SFPTswitch profile is profile number 3200. A standard profile
number may be used as the device class for a device implementing the standard
profile as the primary functional block for functional profile numbers between 100
and 19 999, inclusive. As described in the next section, inheriting profiles use the
same functional profile number as the scope-0 profile from which they inherit their
content. Manufacturers are free to assign any functional profile number to new non-
inheriting profiles, as long as they are in the range of 20 000 to 25 000, and as long as
the number is unique for the program ID template and scope of the resource file set
containing the functional profile.

For example, a UFPTmyCreation user functional profile is defined as follows:

� Scope: 4

� Program ID template: 80:00:9F:20:00:00:00:00

� Functional profile number: 21 234

In this case, the manufacturer with MID 0:00:9F cannot define another functional
profile with a profile number of 21 234 in any other resource file sets with a scope of
4 (see 3.3, Managing Resource Files, for a description of this value) and a device class
of 20:00. The manufacturer can, however, create another functional profile with the
same profile number in a resource file set at scope 3, 5, or 6. The manufacturer can
also create another functional profile with the same number in a scope-4 resource file
set as long as the device class is not 20:00. Other manufacturers can also create
functional profiles that use profile number 21 234, subject to the same rules. If the
same functional profile number is defined in multiple resource file sets, the
definition in the resource file set with a matching program ID template and the
numerically highest value applies. For example, if functional profile 21 234 is
defined in both a scope-3 and scope-4 resource file set, the definition in the scope-4
resource file set applies if the program ID template matches.

3.1.2.3. Inheritance
If a device application implements a functional block based on a standard functional
profile and adds additional members not defined in the standard profile, a user
functional profile can be created that defines the additional members. To simplify
development and maintenance of the user functional profile, the user functional
profile may inherit the members defined in the standard functional profile and
therefore only require the new members to be defined.

54 LONMARK Interoperability Guidelines

EXAMPLE

A developer can add a new network variable member to the Space Comfort
Controller profile (SFPTspaceComfortController). The developer creates a new
scope 3 – 6 functional profile named UFPTspaceComfortController with the same
functional profile number as SFPTspaceComfortController, and specifies that the
user functional profile inherits from the standard functional profile.

A functional profile that uses inheritance is called an inheriting profile. An inheriting
profile includes a flag that specifies that it inherits members from a scope-0 profile.
The inheriting profile must have the same functional profile number as the scope-0
profile. The inheriting profile may have a different name; however, a name similar
to that of the scope-0 profile is recommended.

3.1.2.4. Member Names
Each network variable and configuration property member of a functional profile
has a unique member name for that profile. Member names may be up to 64
characters. The member name may contain only letters, numerals, and the
underscore character. A prefix is not required, but input network variable names
may start with “nvi”, output network variable names may start with “nvo”, and
configuration property names may start with “cp” (preferred) or “nci”. By
convention, the name is mixed case with no underscores, starting with a lower-case
character if a standard prefix is used, and otherwise starting with an upper-case
character. For example, “nviEnergyHoldOff” follows this convention. The
abbreviations listed in 2.7.2.2, Changeable-Type Network Variables, should be used.

3.1.2.5. Member Numbers
Each network variable and configuration property member of a functional profile
has a unique member number for that profile. This member number is used to
associate a network variable or configuration property on a device with the
corresponding network variable or configuration property member of the functional
profile. Member numbers may be in the range of 1 to 4095, and need not be
contiguous. Member numbers must be unique, with the exception that network
variable and configuration property members may use the same number. There is a
maximum of 255 mandatory members and 255 optional members of each type (scope
0 NV, inheriting NV, scope 0 CP, and inheriting CP).

Each member of an inheriting profile may be defined in one of two functional
profiles: the inheriting profile itself and the inherited scope-0 profile with the same
functional profile number. To correctly associate each network variable and
configuration property on a device with either an inheriting profile or a scope-0
profile, the member number is prefixed by a functional profile selector. If the
functional profile selector is an ASCII vertical bar (“|”), the member number
identifies a member of a scope-0 profile. If the functional profile selector is an ASCII
number sign (“#”), the member number identifies a member of the inheriting profile.

Resource Files 55

The number-sign functional profile selector is always used for members of user
functional profiles, including profiles that do not use inheritance. The vertical-bar
functional profile selector is always used for members of standard functional
profiles. Two different functional profile members may have the same member
number as long as they use different functional profile selectors. For example, the
“|1” member of a functional profile is not the same as the “#1” member of the same
profile. This prevents conflicts if new members are added to a standard functional
profile that has already been used as the basis for inheriting profiles.

3.1.3. Language Strings
Language strings are text strings that are referenced by type definitions, functional
profiles, and self-documentation strings. Language strings are stored in language
files. There is one language file for every language supported by a resource file set.
Language strings are referenced by index within the language file so that language-
string references may be translated by looking up the reference in the appropriate
language file. This index is called the language-string index.

Language strings may contain all printable ASCII characters except the tilde (“~”).
C-like escape codes (“\n”, “\x3D”, etc.) are not supported.

A network tool may allow a user to specify a search order for language files, and can
therefore control which set of strings are displayed, depending on the chosen and
available language files. Each language file uses a unique file extension so that it can
use the same base filename as the rest of the resource file set. The standard language
file extensions are listed in Appendix B.

3.1.3.1. Self-documentation String Reference
The self-documentation text within a self-documentation string can reference a
language string using the reserved 0x80 value (represented as an “\x80” ASCII
string). Some network tools may not recognize these string references.

The syntax for a self-documentation string reference is as follows:
\x80[scopeSpecifier:]languageStringIndex

The components of a self-documentation string reference are the following:

� A byte containing the value 0x80, represented by the “\x80” string.

� scopeSpecifier may be a “3”, “4”, “5”, or “6” to specify a scope 3, 4, 5, or 6 resource.
If not included, the scope is 0.

� A colon (“:”) following the scope specifier. The colon is not included if the scope
specifier is not included, otherwise it is mandatory.

� languageStringIndex is the index of the language string within the language file.
This index ranges from 1 to 16 777 216.

56 LONMARK Interoperability Guidelines

EXAMPLES

The following string reference specifies language string index 522 within the
standard resource file set. This string is the following in the standard.eng file:
“Dictates the desired state of the actuator, determined by the specific
application.”

"@2|1;\x80522"

The following string reference specifies language string index 100 within a user
resource file set at scope 3.

"@2#1;\x803:100"

3.1.4. Formats
Formats provide formatting instructions for network variable and configuration
property types. Each network variable and configuration property type must have
at least one format defined. This format describes how the value will be displayed to
or entered by network integrators and network operators. It is possible to define
multiple formats for a network variable type or configuration property type.
Different formats can provide the information in a different order (if the value is a
structure or union) or provide a different scaling factor (for example, the
SNVT_temp_f network variable type has three formats: one for Fahrenheit, one for
differential Fahrenheit, and one for Celsius). Formats are defined in format files
with a .fmt extension. The NodeBuilder Resource Editor User’s Guide provides
instructions on how to define formats.

3.2. Identifying Appropriate Resources
To promote interoperability between devices, Echelon and the LONMARK
Interoperability Association have defined many standard resources. These standard
resources specify standard functional profiles corresponding to specific functions
that are common in specific controls industries such as temperature sensors and
space comfort controllers, and also specify standard operational and configuration
data types required by the controls industry.

Standard resources should be used in applications whenever possible. In some
cases, a developer may find that there is a resource that they want to use that is not
defined in the standard resource file set. In this case, the developer has two
options—propose a new standard resource or develop a user resource.

If the required resource has general applicability within the developer’s industry or
across multiple industries, the developer should work with a LONMARK task group
to propose a new standard resource. Section 3.2.2 identifies guidelines for new
standard resources and Appendix E outlines the procedure for submitting new
standard resource proposals.

Resource Files 57

If the required resource is specific to a particular implementation, installation, or
company, the developer must create a user resource file set defining any required user
functional profiles (UFPs or UFPTs), user network variable types (UNVTs), and user
configuration property types (UCPTs) required by the interoperable interface of the
device. Section 3.2.3 identifies guidelines for using user resources.

To facilitate reuse, a user functional profile should be defined as a general solution,
rather than the specific one. Configuration properties should be used to configure a
functional profile to meet specific requirements. This approach prepares for future
reuse, and also prepares for proposing the user functional profile as a standard.

3.2.1. Using Standard Resources
The standard resources are defined in the standard resource file set. The standard
resource file set includes definitions for standard functional profiles (SFPs or SFPTs),
standard network variable types (SNVTs), standard configuration property types
(SCPTs), standard enumeration types, standard language strings, and standard
formats. The standard resource file set includes language-string definitions for
American English and British English.

With the exception of the standard functional profiles, the standard resources are
documented in the LONMARK SNVT and SCPT Master List included with the standard
resource file set. The standard functional profiles are documented in individual
functional profile documents available on the LONMARK Web site at
www.lonmark.org.

The standard resource file set is also available on the LONMARK Web site at
www.lonmark.org. It is updated periodically as Echelon and the LONMARK
Interoperability Association define new standard profiles and types.

3.2.2. Proposing New Standard Resources
A device developer should propose a new standard resource whenever an
appropriate standard resource is not available, but a resource with general
applicability within the developer’s industry or across multiple industries is
required. The resource may be a functional profile, network variable type,
configuration property type, enumeration type, format, or language string. Any
member of the LONMARK Association may submit a proposal for a new or revised
resource. This section outlines a few guidelines for new standard resources.
Appendix E describes the procedure for submitting new standard resource
proposals.

A new standard resource proposal must meet the following general guidelines:

1 The resource must not be specific to a particular manufacturer or product.

2 The resource must not duplicate an existing standard resource. An exception is a
new standard resource that improves an existing standard resource. In this case,

http://www.lonmark.org/
http://www.lonmark.org/

58 LONMARK Interoperability Guidelines

the LONMARK Association should identify the existing standard resource as
obsolete for new designs.

3 The resource should be based on ISO/IEC standard conventions, or existing
conventions within the appropriate industry, if possible.

4 The resource name must be unique within the standard resource file set, and
must follow similar naming conventions as existing resource names.

5 Echelon assigns functional profile numbers, type indices, and names. These may
differ from the numbers, indices, and names assigned in the proposed resource
file set. However, the proposed numbers, indices, and names must still follow
the required guidelines.

3.2.2.1. Guidelines for New Standard Functional Profiles
A new standard functional profile must meet the following guidelines:

1 The profile should represent an atomic function of a device; it should not be an
aggregation of many different functions. Instead, the different functions should
be broken down into separate profiles.

2 A profile must contain all the mandatory interfaces required to make it useful for
a network integrator. It may contain additional, optional interfaces that make it
more convenient to use. It must be possible to use the profile by using only the
mandatory interfaces and none of the optional interfaces.

3 A profile must identify other profiles with which it will typically be used. The
network variable types must be compatible between the profiles.

4 Changeable-type network variables, as described in 2.7.2.2, should be used for
general-purpose profiles.

5 Floating-point types should be used for numeric inputs and outputs when a
wide range of values with high resolution is required. This guideline does not
apply if a specific numeric type has been standardized within the profile’s
industry.

6 The SNVT_switch type should be used for Boolean (one-of-two levels) inputs
and outputs as well as any discrete data types (one-of-n levels) requiring up to
201 discrete levels. The SNVT_lev_percent type should be used for discrete data
types requiring 202 to 32 766 discrete levels.

7 Enumeration types should be used for state inputs and outputs.

8 A profile should apply to multiple industries, if possible.

9 A profile should be defined as a general solution rather than a specific one.
Configuration properties should be used to configure a functional profile to meet
specific requirements.

10 Profiles must not embed documentation within the text of the profile or other
documents that is better expressed as part of a standard resource. For example, a

Resource Files 59

profile that requires different state inputs cannot use a SNVT_count, SNVT_state,
or SNVT_str_asc input and then provide text documentation that identifies an
interpretation for each of the SNVT_count values, SNVT_state bits, or
SNVT_str_asc strings. Instead, a new enumeration type must be defined with
enumeration values for each of the states, or a structure type with a bitfield must
be created to represent each of coexisting states.

11 A new SNVT should not be proposed solely to support the creation of a new
SCPT. There is no requirement to base a SCPT on a SNVT. A new SNVT may be
proposed for a new SCPT if the type required for a new SCPT would be suitable
for non-configuration network variable inputs and outputs.

12 Network variable members to be shared by multiple functional blocks on a
device should be proposed as new optional members for the Node Object
functional block.

13 Functional profile names should follow the naming guidelines in 3.1.2.1 (e.g.:
SFPToccupancySensor).

14 Functional profile names must be no more than 64 characters, including the four
prefix characters.

15 Profile member names should follow the naming guidelines in 3.1.2.4 (e.g.:
nviEnergyHoldOff).

16 Profile member names must be no more than 16 characters, including the prefix
characters.

17 Profile member numbers must be unique, be between 1 and 4095, and use the
appropriate functional profile selector.

3.2.2.2. Guidelines for New SNVTs and SCPTs
A new SNVT or SCPT must meet the following guidelines:

1 A new fixed-point numeric SNVT should not be proposed if an existing floating-
point SNVT exists for the same measurement type, unless the floating-point
SNVT will not meet the target-application performance requirements.

2 Numeric values must be represented as Système Internationale (SI) units if an
appropriate SI unit is available, except when the generally accepted industry
convention worldwide is not in SI units. A new numeric resource in non-SI units
will not be approved when an existing numeric resource in SI units already
exists.

3 A numeric value might be represented as SI units using the standard multipliers
listed in Table 2. The standard multiplier identifier or its full name should be
included in the type name.

60 LONMARK Interoperability Guidelines

Table 2. Standard Multipliers

Multiplier Name Value Identifier

Pico 10-12 p

Nano 10-9 n

Micro 10-6 u

Milli 10-3 m

Kilo 10+3 k

Mega 10+6 M

For example, a type that is used to describe the current output wattage of a
power station could describe the value in Megawatts. A possible type name
would be SCPTmegaWatt.

4 A new aggregate (structure or union) SNVT or SCPT that aggregates existing
SNVTs or SCPTs should only be proposed if multiple quantities must be
communicated simultaneously in a single update (due to time-stamping needs or
something similar), and several similar products are expected to operate in the
same way. A new aggregate SNVT must not be proposed solely to gather
information into a single variable for the purpose of reducing the number of
network variables required on a device.

5 A new SNVT that is based on a new enumeration type may be proposed when
there is an industry-accepted set of modes, states, functions, or other mutually
exclusive conditions that need to be communicated between products of
different manufacturers.

6 A new aggregate SNVT or SCPT may include bitfields to hold enumerated or
numerical value to reduce the total size of the SNVT or SCPT.

7 A new SNVT, SCPT, or aggregate field representing a Boolean flag should be
based on the boolean_t enumeration type.

8 A new SNVT that is not used exclusively for monitoring and control applications
cannot contain embedded type information, unless that type information is static.
For example, the SNVT_reg_val type contains an embedded unit field that
specifies the type of the raw field. Because of this, the reg_val_unit_t
enumeration type used by the unit field is defined with a static definition.

9 SNVT and SCPT names should follow the naming guidelines in 3.1.1.5 (e.g.:
SNVT_temp_p), and 3.1.1.6 (e.g.: SCPTmaxPressureSetpoint).

10 SNVT names must be no more than 16 characters, including the five prefix
characters.

Resource Files 61

11 SCPT names must be no more than 63 characters, including the five prefix
characters.

12 Every SNVT and SCPT must have at least one format defined. For types that
don’t lend themselves to formatting for textual display, this format may be
defined so that no data is shown. In such a case, the format must be defined so
that the integrator can see some suitable replacement text. For example, the
following format displays a static text string:

UNVT_my_type: text(“<value not shown (binary data)>”);

3.2.2.3. Guidelines for New Standard Enumeration Types
A new standard enumeration type must meet the following guidelines:

1 A value of –1 (0xFF) must be used for an invalid or undefined value.

2 A value of 0 must be used for the default value if a default value exists.

3 Enumeration type names should follow the naming guidelines in 3.1.1.2 (for
example: DCM_SPEED_CONST and DCM_PRESS_CONST).

4 Enumerator values can be added to an existing enumeration type following the
same approval procedure for new enumeration types, with the exception that
new enumerator values cannot be added to an enumeration type if the
documentation for the enumeration type states that the set of enumerator values
is fixed and may not be extended. Except for these fixed enumeration types,
applications must be able to handle unexpected enumerator values.

5 All enumerator names within an enumeration type must have a common,
unique, prefix.

6 Enumeration type names must be no more than 16 characters including the “_t”
suffix.

7 Enumerator names must be no more than 64 characters including the unique
prefix.

3.2.2.4. Guidelines for New Standard Formats
A new standard format must meet the following guidelines:

1 Numerical formats that have different US and SI representations must have US
and SI formats defined with appropriate scaling as required.

2 Formats requiring list separators should use the localized list separator and
specify the localized modifier (“#LO”).

3 Formats for date and time values should use the date and time localization
functions and specify the localized modifier (“#LO”).

4 Formats for unions should use the ternary operator to select alternate formats as
required.

62 LONMARK Interoperability Guidelines

3.2.2.5. Guidelines for New Standard Language Strings
A new standard language string must meet the following guidelines:

1 US language strings must be provided for all standard resources.

2 A language string may not contain a tilde (“~”).

3 Do not put periods at the ends of strings unless they contain two or more
sentences.

4 Use title case for type and profile names (all major words—nouns, verbs, and
adverbs—capitalized; minor words—articles, prepositions, and coordinating
conjunctions—are not capitalized unless they are the first or last word); use
lower case for unit names—unless the name is a proper name in which case it
should have an initial capital; use sentence case (initial capital only) for all other
strings.

5 Avoid useless phrases at the beginning of strings. For example, use “Outdoor
temperature reading” instead of “This is used to provide an outdoor temperature
reading,” or “Used to provide an outdoor temperature reading,” or “Provides an
outdoor temperature reading.”

3.2.3. Using User Resources
User resources are distinct from a manufacturer’s proprietary data because user data
are intended to be manipulated by parties other than the manufacturer or the
manufacturer’s agents. It is allowed that it may be necessary to manipulate user
data to successfully commission a certified device, but manipulation of manufacturer
data cannot be a requirement to successfully commission a certified device.
Manufacturer data may be used for calibration, diagnostic, test, and repair interfaces
used solely for manufacturing or field troubleshooting operations that are not
required for normal commissioning and operation of the device.

Resource Files 63

Guideline 3.2.3A: All user functional profiles, user network variable
types, user configuration property types, and
user enumeration types required for the
interoperable interface of a certified device shall
be documented within a LONMARK resource file set
as described in Chapter 3, Resource Files. A
minimum of one language file shall be included
defining any required language strings. A format
file shall be included defining a minimum of one
format for each user network variable type and
user configuration property type. This guideline
does not apply to any resources required
exclusively for configuration if a passive
configuration tool is supplied. The resource file
set, if any, shall be submitted with the
certification application; and the passive
configuration tool, if any, shall be made available
at the time of application submittal.

Guideline 3.2.3B: There shall be no requirement to access or
modify proprietary data in the course of
successfully commissioning a certified device.
The lack of access to proprietary data shall not
prevent the successful operation or use of the
device’s published, interoperable functional
blocks.

When creating a user functional profile, manufacturers can either inherit from an
existing standard functional profile or define a new user functional profile. A user
functional profile that does not inherit from a standard functional profile, as defined
in 3.1.2.3, Inheritance, cannot form the primary function or basis of a certified device,
but can be supplemental and complementary to the standard functional profiles on
the device.

Developers who choose to add manufacturer-specific network variable and
configuration property members, as a part of their interoperable interface, to the
functional blocks on their devices must provide resource files that contain user
functional profiles defining the manufacturer-specific members. If the user network
variables or configuration properties are added to a LONMARK profile, then the
LONMARK profile must be inheriting or redefined in the user resource files.
Inheritance should be used for all new profiles. Additionally, if the network variable
or configuration property type is not a standard network variable or configuration
property type (SNVT or SCPT), then the user network variable or configuration
property type (UNVT or UCPT) must be defined within the resource file set.

64 LONMARK Interoperability Guidelines

Guideline 3.2.3C: User network variables or configuration
properties that are intended to be a part of a
functional block’s interoperable interface shall be
documented in a user functional profile within the
device’s resource file set. The functional profile
shall define the network variable and
configuration property members.

Network variables or configuration properties that are not associated with a
particular functional block, but pertain to the device as a whole, can be assigned to
the Node Object functional block as manufacturer-defined network variables or
configuration properties.

3.3. Managing Resource Files
There may be multiple resource file sets on a computer. In addition to the standard
resource file set, there may be one or more user resource file sets from one or more
manufacturers. Each resource file set must be contained in a single folder, but there
may be multiple resource file sets in a folder. For example, a network may contain
devices from several different manufacturers, and each manufacturer may supply
their own resource file set with type, functional profile, format, and language strings
specific to their devices.

Each resource file set may be kept in a separate folder. These folders are typically
installed in the LONWORKS Types\User folder (this is c:\LonWorks\Types\User by
default), each identified by the manufacturer name. Large manufacturers may use
additional subdirectories to organize their resource files. For example:
“c:\LonWorks\Types\User\Manufacturer A\Division B.”

To enable network tools to find resource files, a resource catalog is maintained that
contains a list of resource folders. The resource catalog is contained within a
resource-catalog file, which is a file with a .cat extension. By default, the resource
catalog file is contained in the LONWORKS Types folder and is named ldrf.cat (the
full path is C:\LonWorks\Types\ldrf.cat by default), but both the folder and
filename may be changed. There can only be a single resource catalog per computer,
and all applications on the computer must use the same resource catalog.

To be able to associate a resource file with a network variable, configuration
property, or functional block on a device, each resource file set must be associated
with a particular standard program ID (SPID), a range of SPIDs, or with all SPIDs.
Each resource file set includes a program ID template that is compared to the SPID of a
device when searching for resources for that device. The type of association is called
the scope of the resource file. The scope for a resource file specifies what part or parts
of a device’s SPID should be used when selecting the resource file set. The scope is
an integer value between 0 and 6 as defined in the following table:

Resource Files 65

Scope Scope Definition

0 Used for the standard resource file set. The standard resource file set
contains standard definitions for all devices from any manufacturer. This
scope value can only be used for the standard resource file set published
by Echelon and distributed by the LONMARK Interoperability Association.

1 Reserved for future use.

2 Reserved for future use.

3 Used for a user resource file set containing user resources for all devices
with a specified manufacturer ID (MID). This scope value can be used by
a manufacturer for a resource file set that applies to all of the
manufacturer’s devices.

4 Used for a user resource file set containing user resources for all devices
with a specified MID and device class. This scope value can be used by a
manufacturer for a resource file set that applies to all of the
manufacturer’s devices of a specific device class.

5 Used for a user resource file set containing user resources for all devices
with a specified MID and device class, usage, and channel. This scope
value can be used by a manufacturer for a resource file set that applies to
all of the manufacturer’s devices of a specific device class, usage, and
channel type.

6 Used for a user resource file set containing user resources for all devices
with a specified SPID. This scope value can be used by a manufacturer
for a resource file set that applies to a single device type.

EXAMPLE

A manufacturer produces a scope-3 resource file set with all type, format, and
language information for all its devices. The resource file set has a program ID
template of 80:00:9F:00:00:00:00:00. All applications with 0:00:9F (the LONMARK
Technical Staff MID) as the MID portion of their SPID would use the types in this
file set.

By using scope, resource files are treated as a hierarchy of type definitions, with
scope 0 at the top. Resource files may refer to other resource files above them in the
scope hierarchy. For example, a file with a scope of 5 could contain references to
scope 4, 3, and 0 resource files, each with program ID templates that match the
relevant parts of the scope-5 program ID template.

66 LONMARK Interoperability Guidelines

3.4. Implementing Resource Files
Developers can use the NodeBuilder Resource Editor to view standard and user
resource file sets, and to create and maintain user resource file sets. The
NodeBuilder Resource Editor is available as a free download from the LONMARK
Web site to current LONMARK members, and is also included with Echelon’s
NodeBuilder Development Tool.

The LONMARK Web site also includes an open application programming interface
(API) for accessing these files. This API is called the LONMARK resource file API. It is
available in two versions: a Windows dynamic link library version, including an
optional COM interface, that can be used to read and write resource file sets, and a
source-code version that can be ported to any processor and used to read resource
file sets.

A LONMARK resource file set is a resource file set that is compatible with the
LONMARK resource file API, and that conforms to the resource file guidelines
outlined in this chapter.

Each file in a resource file set has a data version number and a format version number,
with the exception of format files that do not include embedded version numbers.
The data version number identifies the version of the data contained within the file.
The format version number identifies the file format that the file conforms to.

Resource Files 67

Table 3 lists the format version numbers as of the publication date of these
guidelines. The table also lists the version number of the resource file API required
to access each format version.

Two conversion utilities are available for converting between different format
versions. The LONMARK Resource File Conversion Utility converts format version-3
format files to format version 2. The NodeBuilder Resource File Converter converts
all other resource-file types and supports conversion between any of the format
versions supported by the resource file API. Both utilities are available from the
LONMARK Web site at www.lonmark.org.

http://www.lonmark.org/

68 LONMARK Interoperability Guidelines

Table 3. Resource File Format Version Numbers

File Type Format
Version Format Changes

Minimum
Required
Resource
File API

1 Initial release. 1.0

2 Added support for larger
profiles and for marking
profiles as obsolete.

2.0

3 Added support inheriting
profiles and for non-
contiguous member
numbers.

2.1 Functional
Profile

4 Added support for CP
arrays and for deleting
profiles.

2.2

1 Initial release. N/A

2 Added support for scale
factors.

N/A
Format File

3 Added support for
language localization.

N/A

1 Initial release. 1.0

2 Added support for larger
language files.

2.0 Language
File

3 Added support for
deleting language strings.

2.2

1 Initial release. Included
NVTs only.

N/A

2 Added CPTs and
enumeration types.

1.0

3 Added support for invalid
values and for marking
types as obsolete.

2.1 Type File

4 Added support for CP
arrays and for deleting
types.

2.2

Resource Files 69

Network Installation 71

4

Network Installation

The physical attachment of devices to a communications channel, such as a
twisted-pair wire or a power-line circuit, is not enough to commission a control
network. The physical attachment only provides a path for the device to send
and receive messages. The device also needs information on the system to
which it belongs and the other devices with which it should share data.
Specifying and loading this additional information is a necessary step for
installing a device into a control network. Address assignment, binding, and
configuration are the network-management tasks associated with managing
this information.

The device design plays an essential role in how it will be installed into an
interoperable control network. Regardless of whether a single device or a
subsystem consisting of a collection of devices needs to be installed into an
interoperable network, a network tool must be able to manage the logical
connections between devices. Bringing devices and systems on-line, making
connections, polling, and querying devices, are all services that a network tool
may perform and to which a device or subsystem must be able to respond.

This chapter outlines the design guidelines that must be followed so that
devices can be installed into an interoperable network. It is also important
that the network tools used to install the interoperable network support
installation of devices that follow these guidelines.

72 LONMARK Interoperability Guidelines

4.1. Network Addressing
Devices use their network addresses to send messages and to determine if messages
are destined for them. A device’s network address consists of the following three
components defined by the ANSI/EIA/CEA 709.1 protocol:

� The domain to which it belongs.

� The subnet to which it belongs within the domain.

� The node ID within the subnet.

Using the ANSI/EIA 709.1-A Control Network Protocol, a device can be a member of
up to two domains. Under ANSI/EIA/CEA 709.1-B, a device can be a member of up
to 65 535 domains. A key function of a network tool is to ensure that in any domain,
no two devices are assigned the same subnet and node ID.

A device can also be addressed by using group addresses, assigned during the
binding process. A single message can be addressed to all members of a group.
Under ANSI/EIA 709.1-A, a device can be a member of up to 15 different groups.
Under ANSI/EIA/CEA 709.1-B, that limit is raised to 65 535 groups.

The binding process also allocates network variable selectors. Network variable
selectors are 14-bit numbers used to identify network variables. All network
variables in a connection must have the same network variable selector value. In
addition, the assigned network variable selector must allow each device to uniquely
associate an incoming network variable update with one of its network variables. As
with network address assignment, a network tool is responsible for allocating group
addresses, tracking group membership, assigning network variable selectors, and
reassigning network variable selectors as needed to produce the desired logical
connectivity. That is, for each network variable, the network tool must ensure that
messages are only sent to, received by, and processed by the desired set of devices.

Network addresses may be defined in a number of ways, including the following:

� Programmed into the device when it is manufactured. This is typically used for
closed, self-contained systems.

� Self-installed by each device during field installation. This is typically used for
small, closed systems.

� Assigned by a network tool during field installation. This is used for most
systems.

Each of these methods represents a trade-off in terms of ease of initial installation,
flexibility, and cost of tools. The ANSI/EIA/CEA 709.1 protocol and these guidelines
have been designed to make all of these installation scenarios compatible. Systems
installed with one of the simple scenarios can migrate at a later date to a more
sophisticated network-management scenario, without having to change device
application code or hardware.

Network Installation 73

To correctly allocate network resources, such as device addresses and network
variable selectors, a network tool must have the freedom to reassign resources as
needed. To support interoperable systems, installation dependencies must not be
built into the devices. A device’s functional behavior must be independent of its
address or the details of its connections to other devices. All messages should be
sent using either implicit addressing, with addresses assigned by a network tool, or
using explicit addressing where the explicit addresses are determined at installation
time using configuration properties.

Guideline 4.1: A certified device application shall not be
dependent upon its network configuration.

4.1.1. Address-Table Entries
Each distinct implicit destination address for an outgoing network variable update,
poll, or application message requires an address-table entry. In addition, each group
to which the device belongs requires an address-table entry. The maximum number
of address-table entries under ANSI/EIA 709.1-A is 15, and each requires five bytes
of on-chip EEPROM. For devices that support ANSI/EIA/CEA 709.1-B, the limitation
of 15 address-table entries has been raised to 65 535.

The number of address-table entries directly affects the ease of installation of the
device, since network variable and message-tag binders may fail if there are an
insufficient number of these entries on the device. However, in a memory-limited
application, such as those implemented on a Neuron 3120 Chip, or similar, there is a
tradeoff between application functionality and these table entries. Wherever
possible, at least 15 address-table entries should be supported to avoid binder
failure.

Guideline 4.1.1: Wherever possible, a certified device should have
sufficient address-table entries to support every
bindable network variable and message tag. This
will often not be possible for ANSI/EIA 709.1-A
devices. As a minimum, all certified devices shall
support a number of address-table entries equal
to the number of non-configuration network
variables plus the number of bindable message
tags, or the protocol limit (15 for ANSI/EIA
709.1-A or 65 535 for ANSI/EIA/CEA 709.1-B),
whichever is fewer.

74 LONMARK Interoperability Guidelines

4.1.2. Network Variable Aliases
Network variable aliases are another tool for the device developer to conserve
address-table entries, and also to prevent limitations due to network variable
connection constraints. For example, network variable aliases are required on a
device when a single network variable output on the device must be connected to
two or more network variable inputs on another device. For example, a single
switch connected to a device containing four actuators—where the single switch
must simultaneously control all four of the actuator inputs.

Network variable aliases can also conserve address-table and group-address entries
on monitoring devices. For example, when an output network variable on a device
is connected to one or more other network inputs on another device—and that same
output variable needs to be bound to the monitoring device—there are two
alternatives:

� Have the monitoring device be a member of the group in the original connection.

� Allocate an alias to the output network variable, and send the alias as a unicast
update to the monitoring device (unicast addressing does not consume address-
table entries on the receiver device).

Aliases are often required when installing devices in open networks. The number of
aliases to implement on a specific device depends upon the application, the available
device resources, and the network topology of the network where it is installed. For
these reasons, the guideline regarding network variable aliases only requires that
device developers provide a reasonable number by using their application
knowledge and understanding, and taking into account the devices’ available
memory resources. In lieu of more specific guidance by the device’s application, the
following formula may be used as a rule of thumb for a minimum value:

NumAliases = (NVcount==0) ? 0 : min(62, 10+(NVcount/3));

Guideline 4.1.2: A certified device shall support a reasonable
number of network variable aliases to avoid
binding errors due to network variable connection
constraints.

4.1.3. Domain-Table Entries
With regard to the number of domain-table entries, it is often useful to have a device
be a member of the zero-length domain so that it may be queried without knowing
its Neuron ID. This is useful when the network database is lost and must be
recovered from the network itself. While the Neuron ID may be acquired by
activating the device’s service pin, and the domain table read with a second
command using the Neuron ID, the service pin may not be easily accessible on

Network Installation 75

devices in some applications. For example, the device may be on a roof or behind a
wall. If it is inconvenient, or not practical, to activate the service pin on a device
which has only a single domain-table entry, and that device’s configured domain is
unknown, then the device cannot be recovered. In these cases, the Query ID
network-management message must be used to get the Neuron ID. While the
service-pin message is always sent as a domain-wide broadcast on the zero-length
domain, the Query ID network-management message is domain specific. Thus, a
network tool must know one of the domains of the device to use the Query ID
network-management message, or it must already know the Neuron ID. Since the
zero-length domain is not typically used for normal system operation, the need for
the second domain entry arises from the need for devices to be members of their
own system domain and the zero-length domain so that the Query ID network-
management message may be used on a known domain to assist in database
recovery. Once the system domain is known, all devices that are members of that
domain may be recovered.

Guideline 4.1.3: A certified device shall support at least two
domains.

4.1.4. Self-Installed Devices
A self-installed device updates its own network-addressing information based on local
inputs—with no interaction with other devices on the network during the
installation process. In a typical self-installed system, the only information set at
installation time is a domain number and group number. The rest of the installation
information—including the majority of the binding information—is set at the time of
manufacture. The user interface at each device is usually very simple; for example,
push-button switches, DIP switches, rotary switches, or a backplane slot ID.

Self-installed devices can communicate across an interoperable network in one of the
following two ways:

� Using a subsystem gateway (described later).

� After re-installation onto the network using a network tool.

Each self-installed device must contain a Node Object functional block with a
SNVT_config_src configuration network variable as specified in the Node Object
functional profile. When the device is manufactured, the value of this variable
should be set to CFG_LOCAL to support self-installation. When the device is
installed into a network using a network tool, the network tool changes the value to
CFG_EXTERNAL to indicate to the device application that the network tool has
taken over management of the device. The device application must not set its own
network addresses when the SNVT_config_src input is set to CFG_EXTERNAL.

76 LONMARK Interoperability Guidelines

Guideline 4.1.4: A certified self-installed device shall implement a
Node Object functional block with a
SNVT_config_src input as described in 4.1.4,
Self-Installed Devices. It must be possible to
configure the device with a network tool, and
have that device’s address be set to any legal
ANSI/EIA/CEA 709.1 Control Network Protocol
address.

4.1.5. Field-Installed Devices
Field-installed devices are installed using a network tool. The tool is typically one of
the following two types:

� The tool is invisible to the user and is embedded in the network. It performs
installation and maintenance behind the scenes. This is known as automatic
installation. To the end user, the network appears to install itself. In reality, the
tool is analyzing the network contents, and is automating installation based on a
set of rules.

� The user interacts with the network tool to configure the network. In this case,
the tool might be embedded in the network—for example, integrated into a
monitoring and control station—or it might be a portable tool that is attached to
the network only during installation and maintenance.

4.2. Passive Configuration Tools
A passive configuration tool is a network tool that can be used on a device to assist in
the successful commissioning of the device without disrupting the operation of other
network tools. It may be a plug-in, standalone software, hardware attachment, or
other tool. A passive configuration tool has the following attributes and capabilities:

� It provides one or more means to monitor or alter configuration properties or
network variables solely for the purposes of replacing, commissioning, or
installing the device.

� It may be used for device-specific configuration or monitoring.

� It does not interfere with other tools or network management devices.

� It does not make changes to any network-configuration information (for
example, address-table entries) on any device both installed and not installed on
the network.

� It leaves a device in the same state as it found it; however, during its operation, it
is free to modify the device’s state and reset the device in the course of modifying
the configuration properties.

� In recognition of the fact that a passive configuration tool may take a device
offline or reset a device, there can be system-level disruptions while using a

Network Installation 77

passive configuration tool on a device without first coordinating the activity with
the other devices, systems, or system operators that depend upon the normal
operation of the device.

� It is available to anyone owning the device on equivalent business terms, and
such availability must be demonstrably free of any discriminatory terms and
conditions.

Guideline 4.2: If a passive configuration tool is required for
successful commissioning of a certified device,
the tool shall conform to the definition of a
passive configuration tool in 4.2, Passive
Configuration Tools.

4.3. Service Pin
The service pin is a physical or logical button on a device that causes the device to
broadcast its Neuron ID and program ID. It is used during installation to uniquely
identify a device and its application to a network tool. The network tool then uses
Neuron ID addressing to assign a network address as described in 4.1, Network
Addressing.

The method used to activate the service pin varies from application to application.
Examples of mechanical methods include activating via an accessible push-button
switch, or a magnetic-reed switch located within an enclosure. A service-pin
message can also be sent under software control. For example, the device can send
the message when the device is powered up or when a predefined series of I/O
events occur. Sending the service-pin message exactly at power-up is not
recommended because it will cause a spike in network traffic when power is
restored after a power failure.

Even if a service pin will not be used as the default identification method for
installing the device, some method for activating the service-pin input must be
accessible to a maintenance technician. The service pin is a simple way to ensure
that an installer can always identify, and thereby establish communication with, a
given device. If necessary, the service pin can be located inside the device such that
it is accessible only to service personnel. However, the activation of the physical or
logical service pin at an asynchronous and arbitrary moment must not cause adverse
device or network function. For example, activation of the service pin will not cause
physical or logical reset of the device, nor will it cause extraneous network traffic.

78 LONMARK Interoperability Guidelines

Guideline 4.3: A certified device shall provide internal or
external access to its service pin. The device
shall respond with a service-pin message as
defined in the ANSI/EIA/CEA 709.1 protocol when
the service pin is activated. For example, the
service pin may be activated when a service
button is momentarily depressed.

4.4. Gateways to Command-Based Systems
In a command-based system composed of multiple devices, commands are sent
between the devices to initiate system actions. This implies that the devices sending
and receiving the commands agree on the command semantics and actions.
Building a gateway to such a system and simply propagating the command structure
across the gateway would not allow the command-based system to interoperate with
a LONMARK system because the LONMARK devices were not programmed to use
these commands. In fact, to get interactions between the devices on both sides of the
gateway, the LONMARK devices would have had to be designed to send and receive
the other system’s commands. Since LONMARK devices communicate via functional
blocks, this method of gateway construction severely limits interoperability.

A better method for constructing a gateway to a command-based system is to think
of the entire command-based system as a single LONMARK device with a set of
standard functional blocks that accomplish the interoperable functions of the
command-based system. Once this abstraction of the command-based system is
defined, it then becomes the interface between the gateway device and the
LONMARK devices. Within the gateway, translations between the commands and
the LONMARK functional blocks are accomplished by the gateway software. In this
way, knowledge of the command set is confined to the gateway and the command-
based system. Any LONMARK device with functional blocks defined that are
compatible with those defined on the gateway can interact with the command-based
system without the foresight of the device developer.

This same technique may be used to create gateways to proprietary LONWORKS
devices that do not meet the requirements of these guidelines. It can also be used to
create gateways between network subsystems that are installed using a network tool,
and those that are self-installed. This enables a proprietary device or a self-installed
subsystem to be viewed as an interoperable subsystem—the proprietary or self-
installed network is independently managed and it interfaces to other devices and
subsystems through one or more gateway devices.

Network Installation 79

Guideline 4.4: Under no conditions shall a certified LONMARK
gateway pass commands from a command-based
system directly into a LONWORKS network.
Instead, these commands shall be mapped to
LONMARK standard and user functional blocks.

4.5. Shared-Media Considerations
A power-line channel and a radio-frequency channel that contain devices within
communicable range of several network tools are two examples of shared-media
channels. When two or more network tools share such a medium, messages can leak
between one tool and devices belonging to another tool. If the tools and installers do
not directly coordinate their activities, the tools and devices must follow conventions
to avoid conflicting network changes or installing the wrong devices. The following
guidelines apply to devices on a shared medium. The term shared media refers not
only to communications-medium sharing but also uncoordinated network-
management activities as described above. It also refers to open, shared media, like
a power-line channel or RF channel; and closed, shared media, like a twisted-pair
channel.

If a foreign network tool inadvertently acquires a device and installs it with network-
management authentication, the device’s owner is unable to reclaim the device over
the network. To prevent this, devices intended for installation on shared media
must provide some means for locally causing the device to go unconfigured. An
unconfigured device does not have a network address. For example, invoking the
Neuron C go_unconfigured() function unconfigures a device and resets its
authentication key, thereby allowing the device’s owner to reclaim the device by
reinstalling it. A typical implementation requires a pushbutton, often the service-pin
button, to be pressed and held for 15 seconds, to cause the device to unconfigure
itself.

Guideline 4.5A: A certified device that is intended for installation
on shared media must provide some means for
locally causing the device to go unconfigured.

Since the service-pin message can be received by foreign network tools, a means is
required for a network integrator to determine if the correct device was installed
upon installing a new device. This can be provided by a wink function as defined in
the ANSI/EIA/CEA 709.1 protocol. The wink function allows a network integrator to
physically confirm that an intended device has been installed. Device winking,
whether due to the installation protocol itself, or post-installation testing, may cause
activity in an unintended device if an incorrect device was installed on a foreign
network sharing the shared-media channel. Since the existence of the local network
may not even be known to people working on the foreign network, the effects of

80 LONMARK Interoperability Guidelines

winking must be benign. For example, an LED may flash on a device, but a motor
should not be powered on.

A device that responds to a wink command must automatically stop winking after a
maximum of 30 seconds. A device must not require special means, like the receipt of
a second wink command, to leave the wink state.

Guideline 4.5B: A certified device that is intended for installation
on shared media must support the wink function
as described in 4.5 and must provide a wink that
does not create a potentially dangerous or costly
situation if invoked at any arbitrary time in the
operational life of the device.

Glossary 81

Appendix A

Glossary

82 LONMARK Interoperability Guidelines

A.1. Definition of Terms
ANSI/EIA 709.1-A A control-network protocol encompassing all seven

layers of the ISO OSI protocol model. It is implemented
in Neuron® Chip microprocessors and Echelon Smart
Transceivers as Echelon’s LonTalk Protocol. It can be
ported to different processors.

ANSI/EIA/CEA 709.1-B An enhanced version of the ANSI/EIA 709.1 control-
networking protocol that allows for greater than 15
address-table entries per device.

Application set The object or objects to which a configuration property
applies. The application set may be a network variable,
a series or compilation of network variables, a functional
block, a series or compilation of functional blocks, or the
entire device.

Base type A fundamental type that may be used as the basis of a
network variable type or configuration property type.
The available base types are defined in 3.1.1, Base Types.

Certified device A device that has been certified by the LONMARK
Interoperability Association to comply with the
LONMARK Application-Layer Interoperability Guidelines and
the LONMARK Layer 1-6 Interoperability Guidelines.

Changeable-type
network variable

A network variable whose type can be changed during
installation. See Changeable-Type Network Variables for
details.

Configuration property
(CP)

A data value used to configure the application program
in a device. Configuration properties are used to set
parameters such as maximum, minimum, default, and
override values. They can be implemented using
configuration network variables or as data items within
configuration files. Configuration property data is kept
in a device’s non-volatile memory.

Configuration property interfaces are indicated with
arrows with magenta shading in color versions of this
document. Configuration property implementations are
indicated with magenta rectangles with shadows.

Configuration property
member

See functional profile member.

Glossary 83

Configuration property
member number

See functional profile member number.

Configuration property
type index

A 16-bit number that uniquely identifies a configuration
property type within the scope defined by the scope
number and program ID template of the resource file
that contains the configuration property type definition.
For example, the configuration property type index for
the SCPTmaxSendTime type is 49 within the scope-0
standard resource file set.

Device See LONWORKS device.

Device channel ID A number that optionally specifies the channel to which
a device is attached.

Device class The Device Class field is a two-byte value identifying the
primary function of a device. It is part of the SPID of the
device. The value is drawn from a registry of pre-
defined Device Class definitions that is maintained and
published by the LONMARK Interoperability Association.

Device interface The network-visible interface to a device consisting of
the Neuron ID, program ID, channel ID, location field,
device self-documentation string, device configuration
properties, and functional blocks.

Device-location field A string or number that optionally specifies the location
of a device.

Device self-
documentation string

A string that specifies the structure of the contents of the
self-documentation strings, the functional blocks, and
optionally describes the function of a device.

Device subclass A two-byte value specifying the usage in the first byte
and the channel type in the second byte. It is part of the
SPID of a device. See the usage and channel type
definitions.

Dynamic network
variable

A network variable that is added to a device by a
network tool after the device is installed.

Format In the context of the program ID: A four-bit value defining
the structure of the program ID and device self-
documentation strings in the device. It is part of the
SPID of a device. The format must be 8 or 9, where

84 LONMARK Interoperability Guidelines

format 8 is reserved for devices that have completed
certification by the LONMARK Interoperability
Association, and format 9 is used for all other devices.
Format 9 must be used for devices that will not be
certified, for devices that will be certified but are still in
development, and for devices that have not yet
completed the certification process. Device formats 0 –
2, and 10 – 15 (0xA – 0xF) are reserved by Echelon for
future use. Device formats 3 – 7 are used by network
interfaces and legacy non-interoperable devices and
must not be used for other interoperable devices.

In the context of a resource file: A string that provides
formatting instructions for a network variable or
configuration property type. Each network variable and
configuration property type must have at least one
format defined. This format describes how the value
will be displayed to or entered by network integrators
and network operators. It is possible to define multiple
formats for a network variable type or configuration
property type. Different formats can provide the
information in a different order (if the value is a
structure or union) or provide a different scaling factor
(for example, the SNVT_temp_f network variable type
has three formats, one for Fahrenheit, one for differential
Fahrenheit, and one for Celsius).

Functional block A functional block is a portion of a device’s application
that performs a task by receiving configuration and
operational data inputs, processing the data, and
sending operational data outputs. A functional block
may receive inputs from the network, from hardware
attached to the device, or from other functional blocks on
a device. A functional block may send outputs to the
network, to hardware attached to the device, or to other
functional blocks on the device.

A functional block is an implementation of a functional
profile. A standard functional block is also known as a
LONMARK object. A standard or user functional block is
also known as an object.

Functional block interfaces are indicated with rounded
rectangles with light-blue shading in color versions of
this document. Functional block implementations are

Glossary 85

indicated with light-blue rectangles with shadows.

Functional block index A sequentially assigned number identifying a functional
block implementation on a device. For Neuron C
applications, the functional block index is assigned by
the Neuron C compiler in the order of declaration. The
first functional block on a device has index 0, the second
index 1, etc. Also called the global index.

Functional profile (FP) A template that describes common units of functional
behavior. Functional profiles are also known as profiles,
functional profile templates, FPs, and FPTs. Standard
functional profiles are also known as LONMARK profiles.
Each functional profile consists of a profile description
and a specified set of network variables and
configuration properties designed to perform a single
function on a device. The network variables and
configuration properties specified by the functional
profile are called the functional profile members. A
functional profile specifies whether or not each
functional profile member is mandatory or optional. A
profile is uniquely identified by a program ID template,
scope, and functional profile number.

Functional profile key See functional profile number.

Functional profile
member

A network variable or configuration property member of
a functional profile. Each functional profile member is
identified as mandatory or optional by the functional
profile. Each member also includes a text description of
the member for the functional profile. For example, the
nviRequest member of the SFPTnodeObject functional
profile defines it as being a SNVT_obj_request type and
having to support RQ_NORMAL,
RQ_UPDATE_STATUS, and RQ_REPORT_MASK
inputs.

Functional profile
member number

A two-byte number that uniquely identifies a network
variable or configuration property member of a
functional profile. This member number is used to
associate a network variable or configuration property
on a device with the corresponding network variable or
configuration property member of the functional profile.
Member numbers must be in the range of 1 to 4095, and
need not be contiguous. Member numbers must be

86 LONMARK Interoperability Guidelines

unique, with the exception that network variable and
configuration property members may use the same
number. There may be a maximum of 255 mandatory
members and 255 optional members of each type (scope
0 NV, inheriting NV, scope 0 CP, and inheriting CP). A
member number may be preceded by a functional profile
selector. For example, the nviRequest member of the
SFPTnodeObject functional profile has a network
variable member number of 1.

Functional profile
number

A two-byte number that uniquely identifies a functional
profile within the scope defined by the scope number
and program ID template of the resource file that
contains the functional profile definition. For example,
the functional profile number for the SFPTswitch profile
is 3200. The functional profile number of the primary
functional profile on a device can be used as the device
class for the device. Functional profile numbers 0
through 99 (inclusive) cannot be used as device classes
for a SPID. Functional profile number 5 is obsolete and
cannot be used for any new devices certified under these
guidelines. Functional profile number 5 cannot be used
to implement the primary functional block on an existing
device recertified to these guidelines. Also called the
functional profile key, or the FPT key.

Functional profile
selector

Associates a functional profile member with either the
functional profile itself or a scope-0 profile. The
functional profile selector may be an ASCII vertical bar
(“|”) or an ASCII number sign (“#”). If the functional
profile selector is a vertical bar, the member number
identifies a member of a scope-0 profile. If the functional
profile selector is a number sign, the member number
identifies a member of the inheriting profile. The
number-sign functional profile selector is always used
for members of user functional profiles, including
profiles that do not use inheritance. The vertical-bar
functional profile selector is always used for members of
standard functional profiles. Two different functional
profile members may have the same member number as
long as they use different functional profile selectors.
For example, the “|1” member of a functional profile is
not the same as the “#1” member of the same profile.
This prevents conflicts if new members are added to a

Glossary 87

standard functional profile that has already been used as
the basis for inheriting profiles.

Functional profile
template

See functional profile.

Global index See functional block index.

Host A device implementing layer 7 of the ANSI/EIA/CEA
709.1 protocol. A host may be based on a Neuron Chip
or Smart Transceiver, in which case it is called a Neuron
Chip-hosted device. A host may be based on another
processor, in which case it is called a host-based device. A
host-based device uses a LONWORKS network interface
to connect to a LONWORKS network.

Host-based device A device that executes its application program on a
processor that is not a Neuron Chip or a Smart
Transceiver.

Host selection A form of network variable selection that occurs on the
host processor. When using host selection, the host
processor must manage the network variable
configuration table.

Inheriting Profile A functional profile that inherits members from a scope-
0 profile.

Interoperability A condition that ensures that multiple devices – from the
same or different manufacturers – can be integrated into
a single network without requiring custom device or tool
development.

LONMARK Association See LONMARK Interoperability Association.

LONMARK brand A branding program for devices that have been tested
and certified by the LONMARK Association for
compliance to the LONMARK guidelines.

LONMARK

Interoperability
Association

The LONMARK Interoperability Associationʹs mission is
to enable the easy integration of multi-vendor systems
based on LONWORKS networks. The Association
provides an open forum for member companies to work
together on marketing and technical programs to
promote the availability of open, interoperable control
devices.

88 LONMARK Interoperability Guidelines

LONMARK object See functional block.

LONWORKS device Hardware and software that runs an application and
communicates with other devices using the
ANSI/EIA/CEA 709.1 protocol. It may optionally
interface with input/output hardware. A LONWORKS
device includes at least one processor and a LONWORKS
transceiver. A LONWORKS device typically includes a
Neuron Chip or Echelon Smart Transceiver. Also called
a LONWORKS node, or simply a node. Devices and device
interfaces are indicated with green shading in color
versions of this document.

LONWORKS network A collection of intelligent devices that communicate with
each other using the ANSI/EIA/CEA 709.1 protocol over
one or more communications channels.

Manufacturer ID (MID) A 20-bit number that uniquely identifies the device
manufacturer of a device. It is part of the device’s SPID.
Manufacturer IDs are assigned by the LONMARK
Interoperability Association. Permanent manufacturer
IDs are assigned upon request from a LONMARK Partner
or Sponsor Member, and are unique to that particular
manufacturer. Temporary manufacturer IDs are
assigned by request of any developer by submitting the
form at www.lonmark.org/mid. Temporary MIDs are
not guaranteed to be unique.

Network-interface
selection

A form of network variable selection that occurs on the
network interface. When using network-interface
selection, the Neuron Chip or Smart Transceiver in the
network interface manages the network variable
configuration table.

Network variable (NV) A data item that a particular device application program
expects to get from other devices on a network (an input
network variable) or expects to make available to other
devices on a network (an output network variable).
Examples are a temperature, switch value, and actuator
position setting. Network variable data is typically
stored in a device’s volatile memory.

Network variable interfaces are indicated with arrows
with yellow shading in color versions of this document.
Network variable implementations are indicated with

http://www.lonmark.org/mid/

Glossary 89

yellow rectangles with shadows.

Network variable
declaration

The establishment of an instance of a network variable
type within the code of an application. For example,
“network input SNVT_obj_request
nviRequest;” is a network variable declaration.

Network variable index A sequentially assigned number identifying a network
variable implementation on a device. For Neuron C
applications, the index is assigned by the Neuron C
compiler in the order of declaration. The first network
variable on a device has index 0, the second index 1, etc.

Network variable
member

See functional profile member.

Network variable
member number

See functional profile member number.

Network variable
programmatic name

The name assigned to a network variable
implementation by the device application developer.
The programmatic name is limited to 16 characters,
including any optional prefixes. The programmatic
name is not significant for interoperability, but
conventions are suggested in 2.7.2.3, Network Variable
Naming Conventions, to make programmatic names easier
to use for integrators.

Network variable
selection

The process of associating a network variable selector
with a network variable on a device.

Network variable type A specification of the length, units, valid range, and
resolution of the data contained within a network
variable. A network variable type may be a simple, one,
two, or four-byte scalar type; or a more complex
structure or union of up to 31 bytes.

Network variable type
index

A 16-bit number that uniquely identifies a network
variable type within the scope defined by the scope
number and program ID template of the resource file
that contains the network variable type definition. For
example, the network variable type index for the
SNVT_switch type is 95 within the scope-0 standard
resource file set.

90 LONMARK Interoperability Guidelines

Neuron Chip-hosted
device

See host.

Neuron ID A unique 48-bit identifier within the read-only data
structure of a device as defined by the ANSI/EIA/CEA
709.1 protocol. It is also called the unique node ID.

Node In common usage, a node is the same as a device. A more
precise definition is that a node is a physical and logical
presence on a LONWORKS network with a unique
Neuron ID and network address. The Neuron ID relates
to the identification of a single instance of an
implemented ANSI/EIA/CEA 709.1 protocol stack. A
device is also a network presence with an application
processor and one or more nodes. A device with
multiple Neuron IDs would consist of multiple nodes.
Some infrastructure devices, such as routers, also consist
of more than one Neuron ID and thus consist of multiple
nodes.

Object See functional block.

Passive configuration
tool (PCT)

A network tool that can be used on a device to assist in
the successful commissioning of the device without
disrupting the operation of other network tools. It may
be a plug-in, standalone software, hardware attachment,
or other tool. A passive configuration tool has attributes
and capabilities as defined in 4.2, Passive Configuration
Tools.

Primary functional
block

The functional block on a device that implements the
most important function for the device. The primary
functional block for a certified device must implement a
standard functional profile.

Primary functional
profile

The standard functional profile that defines the primary
functional block on a device.

Proprietary data Data and message definitions in the device interface that
are known only to the manufacturer and the
manufacturer’s agents. Certified devices can contain
proprietary data, however, there can be no requirement
to access or modify the proprietary data in the course of
successfully commissioning the device; and the lack of
access to proprietary data must not prevent the

Glossary 91

successful operation or use of the device’s published,
interoperable functional blocks.

Self-documentation
string

A text string associated with a device, network variable,
or configuration property that is stored within a device
and within the device interface (XIF) file for a device.
Network tools can read the self-documentation strings
from the device itself or from the device interface file.

Self-documentation
text

Optional text within a device, network variable, or
configuration property self-documentation string that
provides documentation of the intended use of the
device, network variable, or configuration property
respectively for use by integrators.

Shared media channel A communications channel where messages can leak
between tools and devices belonging to different
systems.

Standard configuration
property type (SCPT)

A configuration property type that has been
standardized by the LONMARK Interoperability
Association. A SCPT is a standardized definition of the
units, scaling, encoding, valid range, and meaning of the
contents of configuration properties.

Standard network
variable type (SNVT)

A network variable type that has been standardized by
the LONMARK Interoperability Association.

Standard program ID
(SPID)

An 8-byte number that uniquely identifies the device
interface for a device, encoded according to rules
specified in 2.3, Standard Program ID.

Static network variable A network variable that is statically defined for a device;
that is, a network variable that is not a dynamic network
variable.

Subsystem Two or more devices working together to perform a
function and bearing fixed, pre-defined relationships to
one another. A subsystem may use one or more
ANSI/EIA/CEA 709.1 domains.

92 LONMARK Interoperability Guidelines

Successful
commissioning

The process of taking a device and integrating it into a
LONWORKS network. Successful commissioning means
that the device can be physically installed in a network
and made to perform its application function with the
exclusive use of its device interface and a choice of third-
party tools.

System One or more independently managed subsystems
working together to perform a function. A system may
use one or more ANSI/EIA/CEA 709.1 domains.

Unconfigured device A device without a valid network configuration.

Usage A one-byte value describing the intended usage of the
device. It is part of the SPID of a device. The Usage field
consists of a one-bit Changeable-Interface flag, a one-bit
Functional Profile-Specific flag, and a 6-bit usage ID.

Usage ID A 6-bit value in the least-significant portion of the Usage
field that identifies the primary intended usage of a
device.

User data User functional blocks, user network variables, and user
configuration properties used by a device manufacturer
to augment the device interface. These user data are
data that have not been standardized by the LONMARK
Association. It is allowable to have the manipulation of
user data to be mandatory in order to be able to
successfully commission a certified device.

Wink function A function provided by a device that allows a network
integrator to physically identify the device. For example,
a wink function may blink an LED on the device.

Language File Extensions 93

Appendix B

Language File Extensions

This appendix lists the file extensions used for language files as described in
3.1.3.

94 LONMARK Interoperability Guidelines

B.1. Language File Extensions
Network variable types, configuration property types, functional profiles,
enumeration types, and self-documentation strings can all reference text information
used to describe their name, units, and function. This text information is contained
in separate language files. There is one language file for every language supported by
a resource file set. When a language file is translated, the language string references
still point to the appropriate strings. The file extension of each language file
depends on the language, and is one of the following:

Table 4. Language File Extensions

Language Extension

Czech csy
Danish dan
Dutch (Belgian) nlb
Dutch (default) nld
English (UK) eng
English (US) enu
Finnish fin
French (Belgian) frb
French (Canadian) frc
French (default) fra
French (Swiss) frs
German (Austrian) dea
German (default) deu
German (Swiss) des
Greek ell
Hungarian hun
Icelandic isl
Italian (default) ita
Italian (Swiss) its
Norwegian (Bokmål) nor
Polish plk
Portuguese (Brazilian) ptb
Portuguese (default) ptg
Russian rus
Slovak sky
Spanish (default) esp
Spanish (Mexican) esm
Swedish sve
Turkish trk

SD Syntax and Data Representations 95

Appendix C

Self-Documentation Syntax and
Data Representations

This section details the self-documentation string syntax required for Neuron
C Version 1 and some host-based devices to declare functional blocks,
network variables, and configuration properties.

96 LONMARK Interoperability Guidelines

C.1. Device and Functional Blocks
The device self-documentation string specifies the self-documentation string
structure, the functional blocks, and optionally describes the function of a device.
Network access to the device self-documentation string is defined by the
ANSI/EIA/CEA 709.1 protocol. This string is up to 1024 bytes in length and is
created automatically by the Neuron C Version 2 (or newer) compiler. The device
self-documentation string can be declared using Neuron C Version 1 syntax as
follows:

#pragma set_node_sd_string "sdString"

The syntax for sdString is as follows:
&3.3@fblockList[;[selfDocText]]

The components of the documentation string are the following:

� An ampersand (“&”) prefix.

� A “3.3” substring identifying the major and minor version number of the
guidelines implemented by the device.

� An at sign (“@”) separator.

� fblockList is a list of functional profile numbers with optional array indices and
names for each of the functional blocks implemented on the device. These
numbers and names are delimited by a comma (“,”). The functional profile
numbers must be listed in order of the functional block indices, with the first
functional profile number corresponding to functional block index 0, the second
to functional block index 1, etc. The Node Object functional block
(SFPTnodeObject, or any UFPT inheriting from SFPTnodeObject) if
implemented, must be first with an index of 0.

An array of functional blocks can be specified by appending an opening left-
square bracket (“[“) and array dimension to the functional profile number. These
may be followed by a closing right-square bracket (“]”), but the closing bracket
may be omitted to save a byte of non-volatile memory.

A device-specific name can be provided for a functional block by appending a
string or string reference (as defined in 3.1.3.1, Self-documentation String Reference)
immediately following the functional profile number and array dimension (if
any). If the name is text, it must consist of printable characters, be of no more
than 16 characters in length, and must not contain any left or right square
brackets (“[” or “]”), commas, or periods, and it must not begin with any
number. Functional block names can improve device usability, especially when
there are multiple functional blocks of the same type. For example, naming each
of multiple sensor functional blocks that report the same type of data may aid the
installer in picking the correct functional block on a device.

SD Syntax and Data Representations 97

� An optional semicolon (“;”) terminator. The terminator is required if any
selfDocText self-documentation text is included.

� selfDocText is optional self-documentation text. A description of the intended
device usage for network integrators. The self-documentation text may include
references to language strings as described in 3.1.3.1, Self-documentation String
Reference. A 0x80 value (represented as a “\x80” ASCII string) is reserved for
these references. A 0x81 value (represented as a “\x81” ASCII string) is
reserved for future expansion.

EXAMPLE

The following Neuron C Version 1 directive defines a device self-documentation
string for a device with the following five functional blocks: one Node Object
(profile 0), two Closed-Loop Sensors (profile 2), one Switch (profile 3200), and
one manufacturer-specific functional block (profile 20001). The directive also
specifies “XYZ Company Installation Text” as the self-documentation text for the
device.

#pragma set_node_sd_string "&3.3@0,2,2,3200,20001;
XYZ Company Installation Text"

The following Neuron C Version 1 directive adds the following functional block
names to the previous example: “Node object,” “Widget Opener,” “Gadget
Mover,” “Single-Pole X5,” and “XYZ Config”:

#pragma set_node_sd_string "&3.3@0Node object,
2Widget Opener,2Gadget Mover,
3200Single-Pole X5,20001XYZ Config; XYZ Company
Installation Text"

The following Neuron C Version 1 directive changes the functional block names
and self-documentation text in the previous example to string references in the
scope-0 standard resource file set and a scope-3 user resource file set.

#pragma set_node_sd_string
"&3.3@0\x80468,2\x803:11,2\x803:12,3200\x803:13,
20001\x803:14;\x803:10"

The first string reference (“\x80468”) references the following string in the
standard resource file set:

…
string 468: “Node object”
…

The remaining string references reference the following American English strings
in a scope-3 user resource file set:

98 LONMARK Interoperability Guidelines

…
string 10: “XYZ Company Installation Text”
string 11: “Widget Opener”
string 12: “Gadget Mover”
string 13: “Single-Pole X5”
string 14: “XYZ Config”
…

The advantage of using resource strings is twofold. First, the string text can be
removed from the device’s memory, thus saving memory space. Second, the
strings from resource files can be translated to other languages by providing
additional language files. For example, a French language file can be provided
that translates each of the above strings to French as follows, with no changes
necessary to the application program in the device:

…
string 10: “Texte D'Installation de XYZ Company”
string 11: “Ouvreur De Widget”
string 12: “Moteur De Gadget”
string 13: “Poteau Simple X5”
string 14: “Config de XYZ”
…

The following Neuron C Version 1 directive creates an array of 2 Closed-Loop
Actuator functional blocks named “Widget Opener.”

#pragma set_node_sd_string "&3.3@0Node object,
2[2Widget Opener,3200Single-Pole X5,20001XYZ Config;
XYZ Company Installation Text"

C.2. Network Variables
Documentation of network variables is accomplished through the use of network
variable self-documentation (NVSD) strings. A network variable self-documentation
string is used to define membership of a network variable to a functional block.
Network access to the network variable self-documentation strings is defined by the
ANSI/EIA/CEA 709.1 protocol.

EXAMPLE

The third functional block declared on a device (functional block index 2) is
based on functional profile number 4, the Closed-Loop Actuator profile. This
functional block has one mandatory input network variable, and two output
network variables of the same type—one of which is mandatory and one of
which is optional. The two output variables are of the same type, so it is
important to know which network variable within the device corresponds to the
first output versus the second output in the Closed-Loop Actuator functional
profile.

This mapping of network variables to functional blocks, and to specific network
variables within the functional block, is done within the self-documentation string.

SD Syntax and Data Representations 99

Different self-documentation string formats are used for regular network variables,
configuration network variables, and manufacturer-defined network variables as
described below.

The syntax for a self-documentation string for a network variable or network
variable array belonging to one or more functional blocks is as follows:

@fbIndex[–endFbIndex]||#memberNumber[[mArraySize]][?][;[selfDocText]]

The components of the self-documentation string are the following:

� An ASCII at-symbol (“@”) prefix.

� fbIndex is the functional block index of the functional block that contains the
network variable or network variable array, or the index of the first functional
block in a functional block array that contains the first network variable in a
network variable array, if endFbIndex is specified. The first functional block on a
device is index 0.

� endFbIndex is the functional block index of the last functional block in a
functional block array that contains the last network variable in a network
variable array. If a network variable array is specified and the endFbIndex value
is omitted, the array is assumed to be a member array within the single
functional block specified by fbIndex. The array size is required to convey
multiple functional blocks each containing member arrays. In this case, the
network variable array is mapped as if it were a two-dimensional array as
follows:

nvName[fblockCount][memberArraySize]

� An ASCII vertical bar (“|”) or ASCII number sign (“#”) functional profile selector.
If the functional profile selector is a vertical bar, the member number identifies a
member of a standard profile (scope 0). If the functional profile selector is a
number sign, the member number identifies a member of a user profile (scope 3
to 6).

� memberNumber is the network variable member number within the functional
profile, or the index of the first member number in a member array if mArraySize
is specified.

� mArraySize specifies the array size for a member array.

� An optional ASCII question mark (“?”) changeable-type specifier. The changeable-
type specifier must be included if the type of the network variable may change
after installation.

� An optional semicolon (“;”) terminator. The terminator is required if any
selfDocText self-documentation text is included.

� selfDocText is optional self-documentation text. A description of the intended
network variable usage for network integrators. The self-documentation text
may include references to language strings as described in 3.1.3.1, Self-

100 LONMARK Interoperability Guidelines

documentation String Reference. A 0x80 value (represented as a “\x80” ASCII
string) is reserved for these references. A 0x81 value (represented as a “\x81”
ASCII string) is reserved for future expansion.

EXAMPLES

The following Neuron C Version 1 code maps network variables to network
variable members of the third functional block declared on the device (functional
block index 2). This functional block is based on the Closed-Loop Actuator
profile. The following code maps the nviValue network variable to network
variable member number 1 within the functional profile, the nvoValueFb
network variable to network variable member number 2 within the profile, and
the nvoActPosnFb network variable to network variable member number 4
within the profile.

network input sd_string("@2|1") SNVT_lev_cont nviValue;

network output sd_string("@2|2") SNVT_lev_cont nvoValueFb;

network output sd_string("@2|4") SNVT_ lev_cont nvoActPosnFb;

The following Neuron C Version 1 example maps an nviValue network variable
to network variable member number 1 of the Closed-Loop Actuator profile. This
example includes the optional documentation for the network variable.

network input sd_string("@2|1;boiler pressure")
SNVT_press_p nviValue;

The following Neuron C Version 1 example declares the mandatory output
network variable of an Open Loop Sensor profile with an initial SNVT_temp_p
type and specifies that the type may change to a different type at installation
time.

network output sd_string("@1|1?") SNVT_temp_p nvoValue;

The following Neuron C Version 1 example shows a network variable array
mapped onto a functional block array. Each of functional blocks 3 through 6 has
a member number of 5. Member 5 of functional block 3 is nviExample[0].
Member 5 of functional block 4 is nviExample[1], etc.

network input sd_string("@3-6|5") SNVT_press_p nviExample[4];

C.3. Configuration Properties
Documentation of configuration properties implemented as configuration network
variables is accomplished through the use of network variable self-documentation
(NVSD) strings, but using a different syntax as detailed in this section.
Documentation of configuration properties implemented within configuration files is
accomplished through the use of declaration strings within the configuration file. In
either case, the documentation defines whether the configuration property applies to
the entire device, one or more functional blocks, or one or more network variables.
Configuration properties must be documented if they are to be part of the
interoperable interface of a certified device.

SD Syntax and Data Representations 101

The syntax for a documentation string for a configuration property (which may be a
configuration property array) implemented as a configuration network variable is as
follows:

&header,[select],flag,index,[dim],[rangeMod],[?][;[selfDocText]]

The syntax for a documentation string for a configuration property (which may be a
configuration property array) implemented within a configuration file is as follows
(the only differences are removal of the ampersand prefix and addition of the length
value):

header,[select],flag,index,length,[dim],[rangeMod],[?][;[selfDocText]]

The components of the configuration property documentation string are the
following:

� An ampersand (“&”) prefix. It is only included for a configuration network
variable.

� header specifies whether the configuration property applies to the entire device
(“0”), a functional block or functional blocks (“1”), or a network variable or
network variables (“2”) on the device.

� select optionally specifies to which functional blocks or network variables the
configuration property applies. This field is not specified if the configuration
property applies to the entire device. The field values are listed in Table 5. A
single configuration property may apply to multiple network variables or
functional blocks. Therefore, unlike a network variable, a single configuration
property may correspond to multiple members of multiple functional profiles.
The association with the member or members in the functional profile or profiles
is made by matching the type of a configuration property and the application set
objects to which it applies. This means that multiple functional profile
configuration property members may be implemented by a single configuration
property.

Table 5. Select-Field Values

CP Applies To Select-Field Value

Entire device Null

One functional block Functional block index. If the CP is an array,
all elements of the array apply to the
functional block.

102 LONMARK Interoperability Guidelines

CP Applies To Select-Field Value

Contiguous series of
functional blocks, with
the CP shared by all
functional blocks

First functional block index and last
functional block index separated by a hyphen
(“–”): firstFbIndex–lastFbIndex. If the CP is an
array, all elements of the array are shared by
all functional blocks.

Contiguous series of
functional blocks, with
the CP divided among all
functional blocks

First functional block index and last
functional block index separated by a tilde
(“~”): firstFbIndex~lastFbIndex. This option
may only be used for CP arrays.

Non-contiguous
compilation of functional
blocks, with the CP
shared by all functional
blocks

Functional block indices separated by periods
(“.”). If the CP is an array, all elements of the
array are shared by all functional blocks.

Non-contiguous
compilation of functional
blocks, with the CP
divided among all
functional blocks

Functional block indices separated by slashes
(“/”). This option may only be used for CP
arrays.

One network variable Network variable index. If the CP is an array,
all elements of the array apply to the network
variable.

Contiguous series of
network variables, with
the NV shared by all
functional blocks

First network variable index and last network
variable index separated by a hyphen
(“–”): firstNvIndex–lastNvIndex. If the CP is an
array, all elements of the array are shared by
all network variables.

Contiguous series of
network variables, with
the NV divided among all
functional blocks

First network variable index and last network
variable index separated by a tilde (“~“):
firstNvIndex~lastNvIndex. This option may
only be used for CP arrays.

Non-contiguous
compilation of network
variables, with the NV
shared by all functional
blocks

Network variable indices separated by
periods (“.”). If the CP is an array, all
elements of the array are shared by all
network variables.

SD Syntax and Data Representations 103

CP Applies To Select-Field Value

Non-contiguous
compilation of network
variables, with the NV
divided among all
functional blocks

Network variable indices separated by
slashes (“/”). This option may only be used
for CP arrays.

� flag is a two-digit hexadecimal number encoded as a sequence of two ASCII
digits. The first digit specifies the scope of the resource file set that defines the
configuration property type. The value may be a “0”, “3”, “4”, “5”, or “6” digit
as defined in 3.3, Managing Resource Files. The second digit encodes the flags
described in 2.7.3.4, Configuration Property Flags. The values for each flag are
listed in Table 6. These values may be or’d together, with the exception of the
flags identified as exclusive. For example, both the Device-offline and the FB-
disabled flag may be specified by or’ing 0x82 with 0x81, yielding a value for the
second byte of 0x83. At least one of the values in Table 6 must be specified.
When specified in a C or Neuron C application, the value must be encoded as
“\xhexDigits”, where hexDigits are the two hex-encoded values for the second
byte.

Table 6. Flag Values

Flag Value Exclusive

Constant 0x84 Yes

Device-offline 0x82 No

Device-specific 0xA4 Yes

FB-disabled 0x81 No

Manufacturing-only 0x90 No

No restrictions 0x80 Yes

Reset-required 0x88 No

� index specifies the configuration property index within the specified resource file
set. For example, the configuration property index for the SCPTmaxSendTime
type in the standard resource file set is specified as “49”.

� length specifies the configuration property size in bytes. If a CP array is specified
using the dim field, the length refers to only one element of the array. The length

104 LONMARK Interoperability Guidelines

field is only specified for a configuration property implemented within a
configuration file.

� dim optionally specifies the dimension of a configuration property array. If not
specified, the configuration property is not an array. If specified, the dimension
must be at least two.

� rangeMod optionally narrows the range specified by the configuration property
definition in the functional profile, or specified by the configuration property
type. The rangeMod value is a string as described in 2.7.3.6, Configuration
Property Initializers and Range Modifiers.

� An optional question mark (“?”) changeable-type specifier. The changeable-type
specifier must be included if the type of the configuration property may change
after installation. The changeable-type specifier is required for configuration
properties with inheritable types (like SCPTlowLimit1) if the configuration
property is implemented as a configuration network variable. If a configuration
property is implemented within a configuration file, the question mark is not
needed since the base type of the configuration property is not specified in the
configuration file.

� A semicolon (“;”) terminator.

� selfDocText is optional self-documentation text. A description of the intended
configuration property usage for network integrators. The self-documentation
text may include references to language strings as described in 3.1.3.1, Self-
documentation String Reference. A 0x80 value (represented as a “\x80” ASCII
string) is reserved for these references. A 0x81 value (represented as a “\x81”
ASCII string) is reserved for future expansion.

Each field in the documentation string is delimited by a comma (“,”). Two
consecutive commas (“,,”) indicate that the field is null (empty or unspecified),
except when a semicolon is encountered. In the event that a semicolon is
encountered, all remaining fields of the string are considered null.

FIXED-TYPE EXAMPLES

The following configuration network variable self-documentation string declares
a 31-byte SCPTlocation configuration property (CPT index 17 within the scope-0
standard resource file set) that applies to functional block index 0. No CP flags
or range modifications are specified.

"&1,0,0\x80,17;"

The following configuration-file documentation string declares a 2-byte user
configuration property (CPT index 1 within a scope-3 resource file set) that
applies to the entire device. No CP flags or range modifications are specified.

"0,,3\x80,1,2;"

The following configuration-file documentation string declares a 10-element CP
array, with each element requiring 2-bytes (CPT index 1 within a scope-3

SD Syntax and Data Representations 105

resource file set) that applies to the entire device. No CP flags or range
modifications are specified.

"0,,3\x80,1,2,10;"

The following configuration-file documentation string declares a 12-byte
SCPTsetPnts configuration property (CPT index 60 within the scope-0 standard
resource file set) that applies to functional block index 1. No CP flags are
specified, but range restrictions are provided.

"1,1,0\x80,60,12,,|-2500:3000|-2750:3200|||:2000"

The SCPTsetPnts type is defined in the standard resource file set as follows:
typedef struct {
 signed long occupied_cool;
 signed long standby_cool;
 signed long unoccupied_cool;
 signed long occupied_heat;
 signed long standby_heat;
 signed long unoccupied_heat;
} SNVT_temp_setpt;

The range modification uses the default ranges for each member of the structure
except for the standby_cool and unoccupied_cool members, and the high value
of the unoccupied_heat member. The range modification can be interpreted as
follows:

default:default|

standby_cool low:standby_cool high|

unoccupied_cool low:unoccupied_cool high|

default:default|

default:default|

default:unoccupied_heat high

CHANGEABLE-TYPE EXAMPLES

The following configuration-file documentation string declares a 12-byte
SCPTmaxRnge configuration property (CPT index 60 within the scope-0
standard resource file set) that applies to functional block index 1. No CP flags
are specified. The type is changeable and inherited from a changeable-type
network variable with an initial type of SNVT_temp_setpt. A range modification
is specified that uses the default low and high values, except for standby_cool
and unoccupied_cool values, and the high value for unoccupied_heat.

"1,1,0\x80,20,12,,|-2500:3000|-2750:3200|||:2000,?"

The following configuration-file documentation string is the same as the
previous example, deleting the range modifications and adding an array
specification with a dimension of 2:

106 LONMARK Interoperability Guidelines

"1,1,0\x80,20,12,2,,?"

The following configuration-file documentation string is the same as the
previous example, deleting the array dimension.

"1,1,0\x80,20,12,,?"

Host-Based Devices 107

Appendix D

Host-Based Devices

This appendix describes additional guidelines for host-based devices. A host-
based device is a device that executes its application program on a processor
that is not a Neuron Chip or a Smart Transceiver. A host-based device may
use a Neuron Chip or Smart Transceiver as a communications processor.

108 LONMARK Interoperability Guidelines

D.1. Network Variable Selection
Host-based devices must be able to receive network variable updates from other
devices over the network and must be able to send network variable updates to
other devices over the network. To do this, host-based devices must correctly
manage network variable selectors as defined by the ANSI/EIA/CEA 709.1 protocol.
The process of associating a network variable selector with a network variable is
called network variable selection. Network variable selection is performed by looking
up a network variable selector in a network variable configuration table. A host-based
device may implement network variable selection in one of two ways, depending on
where network variable selection occurs: host selection or network-interface selection.
When using host selection, network variable selection occurs on the host processor
and the host processor must manage the network variable and alias configuration
tables and preserve their contents across hardware resets and power cycles. When
using network-interface selection, network variable selection occurs on the Neuron
Chip or Smart Transceiver within the network interface, and the Neuron firmware
manages the network variable and alias configuration tables.

Guideline D.1A: If a host-based certified device implements host
selection, the host application shall manage the
network variable and alias configuration tables
and shall respond correctly to the Update and
Query NV Config messages as specified by the
ANSI/EIA/CEA 709.1 protocol.

Guideline D.1B: If a host-based certified device implements host
selection, the host application shall preserve
network variable configuration table, alias
configuration table, and configuration file
contents across hardware resets and power
cycles.

A host-based device may support the following maximum numbers of network
variables and alias table entries:

Host-Based Devices 109

Table 7. Maximum Number of Static NVs and Aliases

Host Selection Network-
Interface
Selection ANSI/EIA 709.1-A ANSI/EIA/CEA 709.1-B

Maximum total NV
count (static plus
dynamic)

62 (only static
NVs possible)

4 096 65 535

Maximum number
of aliases

62 8 192 65 535

When using a network interface, the network processor within the network interface
informs the host processor whether or not an incoming message is authenticated. It
is the responsibility of the host application to determine whether authentication is
required for a given network variable by checking the corresponding network
variable configuration-table entry.

Guideline D.1C: When a host-based certified device receives a
network variable update or poll request, the host
application shall determine whether
authentication is required for the update or poll
request based on the authentication bit in the
corresponding network variable configuration-
table entry on the host. If a network variable is
configured to be authenticated, then the host
application shall reject an unauthenticated
update or poll to that network variable.

Guideline D.1D: When a host-based certified device receives a
network variable fetch and network variable poll
request as specified by the ANSI/EIA/CEA 709.1
protocol, the host application shall respond with
the appropriate data from the requested network
variable. If the application is in the Offline mode
when a network variable poll request is received,
the response shall contain no data. Otherwise,
the response shall contain the correct number of
bytes of data as specified by the network variable
type.

110 LONMARK Interoperability Guidelines

Guideline D.1E: The host application for a host-based certified
device shall deliver the niONLINE and niOFFLINE
commands to the network interface when the
Online and Offline Device Mode messages are
received.

D.2. Device Interface
A host-based certified device must meet all the device interface requirements in
Chapter 2, Device Interfaces. The section lists additional device interface
requirements for host-based devices.

Certification for a host-based device is granted to the combination of the host
application and the network interface. If either of these components is absent, the
device should not appear to be certified. If the network interface can be detached
from the host (e.g., if it is a Serial LonTalk Adapter), then the SPID must be loaded
into the network interface each time the host application is launched.

Guideline D.2A: The host application for a host-based certified
device shall ensure that a certified standard
program ID (SPID) is present in the network
interface during normal operation of the device.

Guideline D.2B: The host application for a host-based certified
device shall implement the self-documentation
requirements specified in Appendix C. It shall
respond to the Query-SNVT request message
with the correct data as specified by the
ANSI/EIA/CEA 709.1 protocol.

D.3. Dynamic Network Variables
A host-based device that implements host selection may implement dynamic
network variables. A dynamic network variable is a network variable that is added to a
device by a network tool after the device is installed. These network variables may
be created and deleted at will, rather than being statically declared. A network
variable that is not dynamic is called a static network variable. The only static
declaration required for a host-based device is the maximum number of dynamic
network variables and aliases supported on the device. This information appears in
the device interface (XIF) file for the device, and it can be queried from the device
using the commands described in this section.

Host-Based Devices 111

Support of dynamic network variables is optional; however, if a device can
dynamically create and delete network variables after being installed in a network,
then the method described in this section must be used. A device that does not
support dynamic network variables may ignore the commands described in this
section.

Guideline D.3: If a host-based certified device implements
dynamic network variables, the implementation
shall conform to requirements listed in D.3,
Dynamic Network Variables.

A host-based device that supports dynamic network variables must implement the
following:

1 The Changeable-Interface flag must be set in the program ID as described in
2.3.4.1, Changeable-Interface Flag.

2 The device must have a version 4.0 or later device interface file as specified in the
LONMARK Device Interface File Reference Guide. The device interface file must
specify the static and maximum dynamic portions of the interface.

3 The device must support and respond to the extended network-management
commands to manage dynamic network variables including the commands to
add and delete network variables and aliases, to query their attributes, and to
bind them. These extended commands are based upon the Install command
defined by the ANSI/EIA/CEA 709.1 protocol, and are listed in the next section.

D.4. Extended Network Management Commands
The extended network management commands are an extension of the ANSI/EIA/CEA
709.1 protocol Install command (message code 0x70). They provide methods to
query self-identification/self-documentation (SI/SD) data, update SI/SD data, inform
the device of a new network variable addition, and remove an existing network
variable. Optional methods are also provided to increase the capacity of the domain
and address tables, as well as other features. The syntax and usage of the commands
are described in the Install and Install Command Data Structures sections of the
ANSI/EIA/CEA 709.1-B protocol specification.

Host-based devices must implement support for a Wink request, which is the
APP_WINK (0) application command within the Install command. Host-based
devices that support dynamic network variables must also support the following
additional application commands within the Install command:

APP_NV_DEFINE (2)

Create a new dynamic network
variable declaration.

112 LONMARK Interoperability Guidelines

APP_NV_REMOVE (3)

Remove an existing dynamic network
variable declaration.

APP_QUERY_NV_INFO (4)

Query SI/SD data for a network
variable.

APP_QUERY_DEVICE_INFO (5)

Query SI/SD data for the device.

APP_UPDATE_NV_INFO (6)

Update SI/SD data for a network
variable.

The command formats, data values, and additional commands to support expanded
capacities and other extended features are described in the ANSI/EIA/CEA 709.1-B
protocol specification.

Except for the Wink command, the extended commands require the device to
implement a version-2, or newer, SI data structure as described in the next section.

D.5. Version 2 SI-Data Structure
The following SI data structure diagram in Figure 10 is a representation of the
version 0 and 1 data structures outlined in ANSI/EIA 709.1-A protocol.

Host-Based Devices 113

Figure 10: Version-0 and –1 SI-Data Structures

The optional SI Extended Header Record enhances parsing of SI data. The optional
Capability Info Record indicates the expanded domain and address table capacities.
These records are optional; if they are not present, then the SI Header’s length field
should not include the size of the records. The records are described in the SI
Extended Header Record and Capability Info Record (snvt_capability_info) sections of the
ANSI/EIA/CEA 709.1-B protocol specification.

The version 2 SI-data structure is shown in Figure 11.

SI Header
(snvt_struct)

NV Descriptor Table
(snvt_desc_struct[])

Node SD String
(null-terminated ASCII)

NV Extension Records
(bitfield)

SNVT Alias Field
(alias_field)

SI Extended Header
Record (optional)

Capability Info Record
(optional)

114 LONMARK Interoperability Guidelines

SI Header

(snvt _struct_v2)
SI Header

(snvt _struct_v2)
NV Descriptor Table

(user defined)
NV Descriptor Table

(user defined)

Node SD String
(null - terminated ASCII)

Device SD String
(null - terminated ASCII) NV Extension Records

(user defined)
NV Extension Records

(user defined)

Figure 11: Version-2 SI-Data Structure

Each of the sections is separate from the others. The organization and
implementation of each is left to the device developer. This is because the Query
SNVT command only reads the SI Header.

The NV descriptor table, device SD string, and extension records are accessed via
dynamic network variable protocol commands that the application must process.
The device’s responses to these commands are sent back to the network, and they
must follow the dynamic network variable protocol. Thus, the developer is free to
choose the most appropriate method of internal representation. However, the
header of the SI data, containing the version of the SI data, must be formatted as
shown in the code example below.

This structure is requested multiple bytes at a time by the Query SNVT command,
and is then parsed by a network tool. The data types given are Neuron C types.
These must be translated as appropriate for other platforms when responding to the
Query SNVT command, taking into account big-endian vs. little-endian storage.

The capability info record (cap field) indicates the expanded address table and
domain table capacities as well as additional features of the device. This record is
optional; if it does not exist, then the SI Header’s length should not include the size
of the record. The record is described in the Capability Info Record
(snvt_capability_info) section of the ANSI/EIA/CEA 709.1-B protocol specification.

Host-Based Devices 115

typedef struct {
unsigned length_hi;

/* length of header only. Others are read via the WINK’s subcommands */
unsigned length_lo; /* APP_QUERY_NV_INFO and APP_QUERY_NODE_INFO */
unsigned num_netvars_lo;

/* Max # of NVs which can be defined (static + dynamic) */
unsigned version; /* version 2 format */
unsigned num_netvars_hi;

/* Max # of NVs which can be defined (static + dynamic) */
unsigned mtag_count;
unsigned long static_nv_count;
unsigned long current_nv_count; /* Number of currently defined NVs */
unsigned long max_nv_in_use; /* Maximum NV index. 0xffff indicates none defined */
unsigned long alias_count;
unsigned long node_sd_text_length;

#ifdef LITTLE_ENDIAN
unsigned unused :6;
unsigned query_stats :1;
unsigned binding_II :1;

#else
unsigned binding_II :1;
unsigned query_stats :1;
unsigned unused :6;

#endif
 snvt_capability_info cap; /* capability info record (optional) */
} snvt_struct_v2;

New Standard Profile and Type Proposal Procedure 117

Appendix E

New Standard Profile and Type
Proposal Procedure

If a standard functional profile, SNVT, or SCPT is not available to satisfy your
product requirements, this appendix outlines the procedure for creating,
proposing, and adopting new LONMARK profiles, SNVTs, and SCPTs.

118 LONMARK Interoperability Guidelines

E.1. Submitting a New Proposal
Any member of the LONMARK Association may submit a proposal for a new or
revised LONMARK profile, SNVT, or SCPT. To create a proposal, the proposal author
must create a Zip archive containing proposed documentation and a proposed
resource file set. The proposal author does not have the means to create a proposed
scope-0 resource file set; the proposal may therefore be submitted with any suitable
program ID template and a scope value of 3, 4, 5, or 6. The documentation must
document the new profiles and types using the documentation template available
from the Tech Resources section of the Members Area at
www.lonmark.org/members/techinfo.cfm. Proposal.zip is the name of the template
document archive containing the proposal templates. The resource file set must
include any new profiles and types, including any required enumeration types and
formats. The resource file set must meet the guidelines described in this appendix
and in Chapter 3, Resource Files.

To submit the proposal, the author must post the proposal for 30-day member
review and comment on the appropriate area of the LONMARK Member Forum. The
appropriate area is typically a task-group conference area within the Member
Forum. Proposals can also be sent to the Association Principal Engineer
(tech@lonmark.org) if there is any doubt on which area of the Member Forum is
appropriate. All SNVT and SCPT proposals must also be sent to
SNVTrequest@lonmark.org for review. All members can comment on any proposals
in the Member Forum. All comments should be posted as a thread to the initial
posting in the Member Forum. Commenting is a conditional requirement to vote in
the approval process.

Comments should be responded to as they are posted. Based upon the scope of the
comments received, the author may prepare a revised proposal addressing the
comments received, including a summary of the comments received and the
resolution of each, and submit it for another review cycle. Alternatively, the
proposal may be voted upon within the task group area of the Member Forum. The
document author and the task group leader will jointly determine when a revised
proposal is required and will determine when a proposal is ready for a task group
vote.

When a task group vote is called for, a request for a vote will be posted within the
thread of the original posting on the Member Forum. The call for a vote must
include an end date for the voting period. The only votes required are from
companies that had posted one or more comments (even if such comment was
simply an approval of the original proposal). The voting period can end early if all
required votes are received.

www.lonmark.org/members/techinfo.cfm
mailto:tech@lonmark.org
mailto:SNVTrequest@lonmark.org

New Standard Profile and Type Proposal Procedure 119

Once the Member Forum and SNVTrequest review is complete, the Principal
Engineer submits the proposal for a two-week review by the Technical Advisory
Committee. The Technical Advisory Committee consists of the Principal Engineer
and five members appointed by the Board of Directors. Each year, up to three seats
are made available to allow rotation of committee participants. The role of the
Technical Advisory Committee is to advise the board on particular focus topics as
requested by the Executive Director or Board of Directors, such as reviewing and
approving profiles.

Based on the scope of comments received from the Technical Advisory Committee,
the Principal Engineer may either request a revised proposal from the task group
leader or author, or forward the final proposal along with recommendations to the
Executive Director for forwarding to the LONMARK Board of Directors. Upon
approval by the Board of Directors, the final proposal is then submitted to Echelon
for incorporation into the standard resource file set.

E.2. Contact
If you have any questions about this process or need assistance please contact the
LONMARK technical staff using one of the following:

LONMARK Technical Services
E-mail: tech@lonmark.org
Tel: +1-408-938-5266
Fax: +1-408-790-3838

mailto:tech@lonmark.org

Requirements for Retesting, Upgrading, and Recertifying Devices 121

Appendix F

Requirements for Retesting,
Upgrading, and Recertifying

Devices

This appendix describes the situations where a device must change its
standard program ID (SPID), undergo recertification, be retested by the
LONMARK technical staff, and be upgraded from earlier versions of the
guidelines.

122 LONMARK Interoperability Guidelines

F.1. Certified Device and Resource File Changes
With the exceptions described in this appendix, any change to the device interface of
a device or its device interface or resource files as defined in Chapter 2, Device
Interfaces, and Chapter 3, Resource Files, requires a new standard program ID,
recertification, and resubmittal to the LONMARK Association. A device interface
change includes, but is not limited to, any addition, deletion, or re-ordering of
network variables and configuration properties. A resubmittal consists of giving any
modified files from the original certification to the LONMARK Association if a change
has been made.

The following table lists exceptions to the above guideline. A check mark (;) in a
Required column means that the particular change requires a SPID change,
recertification, or resubmittal as indicated by the check marks. Numbers refer to
footnotes with detailed requirements.

The XIF Ref column identifies the corresponding field in the text-format XIF file. The
following format is used for references to the global section of the XIF file: “line.field”.
For example, “6.3” represents global line 6 field 3. The following format is used for
references to named sections of the XIF file: “section.line.field” where section is “NV”
for the network variable section, “MT” for the message tag section, “FILE” for the
file definition section, and “NVVAL” for the NV values section. For example,
“NV.1.2” represents line 1 field 2 in the network variable section.

Table 8. SPID, Recertification, and Resubmittal Requirements

XIF Ref Change SPID Change
Required

Recertification
Required

Resubmittal
Required

1 to 3 XIF file header information changes
as follows: changes to version
numbers and other information in XIF
file lines one through three, inclusive
(including: XIF creation date, APC
revision, and XIF version)

� � �

6.3 Line 6, field 3 of the XIF file (whether
a device can receive incoming
application messages)

� � �

6.6 Changes to the number of network
input buffers � � �

6.7 Changes to the number of network
output buffers � � �

6.8 Changes to the number of network
priority output buffers � � �

Requirements for Retesting, Upgrading, and Recertifying Devices 123

XIF Ref Change SPID Change
Required

Recertification
Required

Resubmittal
Required

6.11 Changes to the number of
application input buffers

� � �

6.10 Changes to the number of
application output buffers

� � �

6.9 Changes to the number of
application priority output buffers

� � �

6.12 Changes to a network input buffer
size

� � �

6.13 Changes to a network output buffer
size

� � �

6.15 Changes to an application input
buffer size

� � �

6.14 Changes to an application output
buffer size

� � �

6.18 Changes to the receive transaction
buffer count

� � �

6.21 Changes to statistics-relative
address references

� � �

6.22 Changes to maximum write-memory
block size

� � �

7.1 Changes from one Neuron Chip
model to another: e.g., 3150 to
3120E2

1 1 1

7.2 Changes to the input clock speed:
e.g., 5MHz to 10MHz

� � �

7.3 Changes to the firmware version:
e.g., 7 to 12 1 1 1

7.4 Receive transaction block size � � �
7.5 Transaction control block size � � �
7.6 On-Chip RAM � � �
7.7 Off-chip RAM � � �

7.8 Domain-table entry size � � �

7.9 Address-table entry size � � �

124 LONMARK Interoperability Guidelines

XIF Ref Change SPID Change
Required

Recertification
Required

Resubmittal
Required

7.10 Network variable configuration table
size

� � �

7.11 EEPROM size � � �

7.12 Alias table entry size � � �

8.1 &
8.2

Changes to the transceiver type with
the same channel type: e.g., FTT-
10A to LPT-10

� � ;

8.4 to 11 Changes to the channel type: e.g.,
TP/FT-10 to PL-20N

; 2 ;

12 Changes to the functional block
names within the device self-
documentation string (e.g., FCUnit to
FanCoilUnit)

� � �

NV.1.1 Changes to an NV programmatic
name

� � ;

N/A Adding or deleting a changeable-
type flag to or from an NV

; 2 ;

NV.1.3
& 1.4

Changes to rate estimates for NVs � � �

NV 2.1 Changes to offline update � � �

NV.2.5 Changes to default NV service type
(e.g., acknowledged to
unacknowledged)

� � �

NV.2.7 Changes to default authentication
attribute of an NV

� � �

NV.2.9 Changes to default priority of an NV � � �

NV.2.6,
2.8, 2.10

Changes to the configurable/non-
configurable modifier for service
type, authentication, or priority

; 2 ;

NV.2.12 Changes to whether an NV is
synchronized

� � ;

MT.1.3
& 1.4

Changes to rate estimates for
message tags

� � �

Requirements for Retesting, Upgrading, and Recertifying Devices 125

XIF Ref Change SPID Change
Required

Recertification
Required

Resubmittal
Required

12 Change the guideline version
number in the device self-
documentation string: e.g.,
"&3.2@0NodeObject,8020FanCoilUn
it; Device SD Text" to
"&3.3@0NodeObject,8020FanCoilUn
it; Device SD Text"

3 2, 3 3

12 Changes to the self-documentation
text in the device self-documentation
string (text after the semicolon): e.g.,
"&3.3@0NodeObject,8020FanCoilUn
it; Node SD Text" to
"&3.3@0NodeObject,8020FanCoilUn
it; Device SD Text"

� � ;

NV.3-N Changes to the self-documentation
text in an NV self-documentation
string (text after the semicolon): e.g.,
"@0|1;ObjRequest" to
"@0|1;Request"

� � ;

NV.3-N
and
FILE.2-
N

Changes to the self-documentation
text in a CP documentation string
(text after the semicolon): e.g.,
"&1,0,0\x80,49;NodeSendTime" to
"&1,0,0\x80,49;-Send Time"

� � ;

N/A Bug fixes that do not modify the
device interface or resource files
including the XIF file

4 � �

N/A Bug fixes that do not modify the
device interface or resource files
including the XIF file with the
exception of changes to the model
number field in the SPID.

; � ;

FILE.1 Addition of CP template or values
FILE tables to the XIF file

� ; ;

NVVAL
1

Addition of an NVVAL section to the
XIF file

� 2 ;

FILE.2 Changes to existing CP value FILE
entries in a XIF file

� � ;

NVVAL
2

Changes to existing NVVAL entries
in a XIF file

� � ;

N/A Changes and fixes to existing format
files

� � ;

126 LONMARK Interoperability Guidelines

XIF Ref Change SPID Change
Required

Recertification
Required

Resubmittal
Required

N/A Language-file strings added to an
existing language file

� 2 ;

N/A Creation of an alternate language file
(other language)

� � ;

N/A Fixes (spelling, clarity, etc.) to existing
language strings

� � ;

N/A Changes to any portion of the
resource file set not listed above

� 2 ;

N/A Changes to any part of the device
interface not listed above

; ; ;

Notes:

1 In general, a change in the Neuron firmware version or Neuron model number
requires a new SPID, recertification, and resubmittal. This is because new
firmware versions or Neuron models tend to have different capabilities and
limitations of which network tools must be aware, and the SPID is the best way
to communicate this information. An exception is an upgrade from firmware
version 7 to version 12 or 13. A second exception is a change from a Neuron 3120
Chip to a compatible FT 3120 Smart Transceiver, or vice versa; or a change from
a Neuron 3150 Chip to a compatible FT 3150 Smart Transceiver, or vice versa.
These particular upgrades do not require a new SPID, recertification, or
resubmittal. Echelon may identify additional firmware upgrade exceptions in
the future. Contact the LONMARK Principal Engineer at tech@lonmark.org for a
list of the current firmware upgrade exceptions.

2 Full recertification is not required, but resubmittal is required and an
administrative fee will be charged. The LONMARK technical staff will examine
the resubmitted files for errors.

3 In general, a change in the guideline version number requires a new SPID,
recertification, and resubmittal. Exceptions are identified in F.2, Upgrading to the
Version 3.3 Guidelines.

4 A new SPID is not required, but SCPTminObjVer/ SCPTmajObjVer or
SCPTminDevVer/SCPTmajDevVer configuration properties should be used for
tracking revisions to functional blocks. See 2.8, Device and Functional Block
Versioning, for guidelines on versioning.

mailto:tech@lonmark.org

Requirements for Retesting, Upgrading, and Recertifying Devices 127

F.2. Upgrading to the Version 3.3 Guidelines
According to the LONMARK Logo License agreement, all devices certified to earlier
versions of these guidelines must be recertified within 18 months of their initial
certification, or six (6) months after the release of new guidelines—whichever is later.
This section lists exceptions to this requirement. The following cases are exempted
from the recertification requirement until the next release of the guidelines:

� All previously-certified devices that were certified to version 3.0 of the LONMARK
Application Layer Guidelines.

� All devices certified to the version 3.1 or 3.2 LONMARK Application Layer
Guidelines that meet all requirements of the version 3.3 guidelines with the
exception of the guideline version number and the following guidelines: 2.5B,
2.7.2.2, 2.8, 2.9A, and 2.9B. This exemption does not apply to devices that use
functional profile number 5, the Controller profile, to implement their primary
function. All devices with Controller functional blocks implementing their
primary function must be updated to comply with the version 3.3 guidelines
with a new SPID, and must be resubmitted for certification. Devices that do not
use the Controller functional profile to implement their primary function, and
that satisfy this exemption, may be identified as complying with the version 3.3
guidelines, and the guideline version number may, at the manufacturer’s
discretion, be updated in the device self-documentation string and device
interface (XIF) file.

Index 129

Index

A
address tables, 71, 72
addressing

explicit, 71
implicit, 71

alarms
reporting, 19

aliases, 72
ANSI/EIA 709.1-A, 80
ANSI/EIA/CEA 709.1 Control Network

Protocol
defined, 5, 6
reference, 8

ANSI/EIA/CEA 709.1-B
defined, 80

APP_WINK, 109
application sets. See configuration

properties, application sets
defined, 80

application-layer interfaces. See device
interfaces

ASCII, 8
automatic installation, 74

B
barcodes, 13
base types, 47, 80
binding, 23

C
capability info records, 112
certified devices, 80
CFG_EXTERNAL, 73
CFG_LOCAL, 73
Changeable Interface flag, 109, See program

IDs
changeable_type keyword, 26

changeable-type network variables. See
network variables, changeable type
defined, 80

channel IDs, 16, 81
Channel Type field. See program IDs
channel types, 15
channels

defined, 6
shared-media, 77, 89

character encoding, 8
CODE-39 format, 13
commissioning

successful, 90
communications channels. See channels
config_prop keyword, 37
configuration files. See configuration

properties, configuration files
configuration network variables. See

configuration properties, configuration
network variables

configuration properties, 38
application sets, 29
arrays, 30
configuration files

access methods, 33
defined, 32
format, 99

configuration network variables
defined, 32

Constant flag, 34
defined, 19, 28, 80
Device-Offline flag, 35
Device-Specific flag, 35
distribution methods, 30
dividing, 31
documentation strings, 99
examples, 40
FB-Disabled flag, 35
flags, 34, 101

130 LONMARK Interoperability Guidelines

implementing, 32, 36
inherited-type, 26
initializers, 38
Manufacturing-Only flag, 36
member numbers, 81
members, 80
modifiers, 37
range-modifiers, 38
Reset-Required flag, 36
self-documentation strings, 36
sharing, 30

configuration-property types
definitions, 50
index, 81
standard, 46

defined, 28, 89
guidelines, 59
proposing, 116

user, 46
defined, 28

configurations property types
defined, 28

connections
defined, 23
fan-in, 22
fan-out, 22

control network
defined, 5

conversion utilities, 67
CP dividing. See configuration properties,

dividing
cp keyword, 37
CP sharing. See configuration properties,

sharing
cp_family keyword, 37

D
data version numbers, 66
device channel IDs. See channel IDs
Device Class field. See program IDs
device classes

defined, 81
functional profile numbers, 53

device interface (XIF) files
defined, 6, 42

device interfaces
accessing, 12
changes, 120
defined, 6, 12, 81
host-based, 108

device location field. See location field
device self-documentation strings. See self-

documentation strings
device subclasses

defined, 81
device-interface (XIF) files

changes, 120
reference, 8

devices
defined, 6, 81
field-installed, 74
host-based, 85

defined, 105
Neuron Chip-hosted, 88
primary functions, 51
self-installed, 73
unconfigured, 77, 90
versioning. See versioning

direct memory read/write access method, 33
documentation strings

configuration property, 99
domain tables, 72
domains, 70
dynamic network variables

defined, 81, 108

E
enumeration types

conventions, 47
defined, 47
standard, 46

guidelines, 61
user, 46

explicit addressing, 71
extended network management commands,

109

Index 131

external interfaces. See device interfaces

F
fan-in connections, 22
fan-out connections, 22
fblock statements, 21
field-installed devices, 74
fields

structure, 48
union, 48

file-transfer protocol, 32
access methods, 33
random and sequential access method, 33
sequential access method, 34

flags, 101
folders

resource files, 64
Format field. See program IDs
format version numbers

defined, 66
formats

converting, 67
defined, 56, 81
standard

guidelines, 61
FTP. See file-transfer protocol
functional blocks

defined, 6, 19, 82
implementing, 20
index, 20, 83
interfaces, 20
primary, 88

defined, 14
versioning. See versioning

functional profile templates
defined, 51

functional profiles
conventions, 52
defined, 19, 51, 83
inheritance, 53
inherting profiles, 54
keys, 83, See functional profiles, numbers
manufacturer-specific members, 63

member names, 54
member numbers

defined, 83
members, 51

defined, 83
names, 52
numbers, 53, 54, 84
primary, 88

defined, 14
reference, 8
scope 0 profiles, 54
selectors, 84
standard, 46

defined, 51
guidelines, 58
proposing, 116

templates, 85
user, 46

defined, 52
Functional Profile-Specific flag. See program

IDs
functional-profile selectors

defined, 54

G
gateways, 76
global index, 85, See functional blocks, index
go_unconfigured() function, 77
groups, 70

H
host selection, 85

defined, 106
host-based devices, 85

defined, 105
hosts, 85

I
implicit addressing, 71
inheritance, 53
inherited-type configuration properties. See

configuration properties, inherited-type

132 LONMARK Interoperability Guidelines

inheriting profiles
defined, 54, 85

initializers. See configuration properties,
initializers

installation
automatic, 74

interoperability
defined, 85

L
language files

defined, 55
extensions, 92

language strings
defined, 55
index, 55
standard

guidelines, 62
location fields, 17

defined, 81
LONMARK Association. See LONMARK

Interoperability Association
LONMARK Association Principal Engineer, 8
LONMARK brand, 85
LONMARK certification, 7
LONMARK Device Interface File Reference

Guide, 8
LONMARK Interoperability Association

defined, 85
LONMARK Interoperability Guidelines

defined, 5
LONMARK Layer 1–6 Interoperability

Guidelines, 5
reference, 8

LONMARK logo, 5, 7
LONMARK objects. See functional blocks
LONMARK profiles. See functional profiles
LONMARK Program Overview, 8
LONMARK resource file sets

defined, 66
LonTalk protocol, 5
LONWORKS devices, 86
LONWORKS networks, 86

LONWORKS platform, 5

M
manufacturer data, 62
Manufacturer field. See program IDs
manufacturer IDs

defined, 14, 86
temporary MIDs, 14

member names
conventions, 54
defined, 54

member numbers
defined, 54
ranges, 54

members. See functional-profiles, members
Model Number field. See program IDs
model numbers. See program IDs

N
network addresses

defined, 70
defining, 70
explicit, 71
implicit, 71

network management commands
extended, 109

network tools, 74
passive configuration tools, 74, 88

network variables
aliases, 72
arrays, 24
changeable-type, 25

defined, 80
declaration, 87
defined, 19, 22, 86, 108
dynamic, 81
implementing, 23
index, 87
naming conventions, 27
programmatic names, 87
selection, 106
selectors, 70

Index 133

management, 106
self-documentation strings, 23
static, 89, 108

network-interface selection, 86
defined, 106

networks
defined, 86

network-variable selection, 87
network-variable types

defined, 87
definitions, 50
index, 87
standard, 46

defined, 22, 89
guidelines, 59
proposing, 116

user, 46
defined, 22

Neuron Chip-hosted devices, 88
Neuron IDs

barcodes, 13
defined, 12, 88

Node Object
defined, 19
guidelines, 20
SCPTlocation, 17
self-installed devices, 73
shared members, 59, 64
versioning, 42

NodeBuilder Resource Editor User’s Guide, 8
nodes. See devices

defined, 88

O
objects. See functional blocks

P
passive configuration tools

defined, 74, 88
permanent MIDs. See manufacturer IDs
plug-ins, 74
primary functional blocks, 88, See functional

blocks
primary functional profiles, 88, See

functional profiles
primary functions, 51
program IDs

Changeable Interface flag, 15
Channel Type field, 15
defined, 13
Device Class field, 14
Format field, 14
Functional Profile-Specific flag, 15
Manufacturer field, 14
Model Number field, 16
model numbers, 16
permanents MIDs, 14
standard, 89
Usage field

defined, 15
usage IDs, 15

program-ID templates
defined, 64

programmatic names
network variables, 87

property lists, 38
property references, 38
proprietary data, 7, 62, 88

Q
Query ID network-management messages,

73
Query SNVT commands, 112

R
range modifiers. See configuration

properties, range modifiers
resource catalogs

defined, 64
resource-catalog files, 64

resource editor, 66
resource file API, 66
resource file sets. See resource files

defined, 46

134 LONMARK Interoperability Guidelines

resource files
changes, 120
defined, 45
folders, 64
guidelines, 57
implementing, 66
managing, 64
scope

defined, 64
standard

proposing, 57
using, 57

user, 62
defining, 57

S
scope

defined, 46, 64
scope 0 profiles

defined, 54
scope specifiers, 55
SCPT. See configuration-property

types:standard
SCPTdevMajVer, 41
SCPTdevMinVer, 41
SCPTlocation, 17
SCPTmaxNVLength, 26, 27
SCPTnvType, 25, 26
SCPTobjMajVer, 42
SCPTobjMinVer, 42
selectors, 70
self-documentation strings

defined, 89
device, 18

defined, 81, 94
network variable, 23

defined, 96
self-documentation text, 55

defined, 89
self-installed devices, 73
service pins, 75
shared-media channels, 77, 89
SI-data structure, 110

SNVT and SCPT Master List, 9
SNVT_config_src, 73
SNVTs. See network-variable

types:standard
spidData.xml, 9

downloading, 13
SPIDs. See program IDs
standard configuration-property types. See

configuration-property types, standard
standard network-variable types. See

network-variable types, standard
Standard Program ID Reference, 9
standard program IDs, 89, See program IDs
Standard Transceiver Reference, 9
static network variables, 89, 108
StdXcvr.xml, 9
string references

defined, 55
structure types, 48
subsystems, 76

defined, 89
successful commissioning, 90
systems, 90

T
template files

defined, 32
temporary MIDs. See program IDs
types

base, 47
enumeration, 47
structure, 48
union, 48

U
UCPT. See configuration-property

types:user
unconfigured devices, 90

defined, 77
union types, 48
unique node IDs. See Neuron IDs
UNVTs. See network-variable types:user

Index 135

usage, 90
Usage field. See program IDs
usage IDs, 90, See program IDs
user configuration-property types. See

configuration-property types, user
user data, 90
user network-variable types. See network-

variable types, user

V
value files

defined, 32
Version 2 SI-data structure, 110
version 3.3 guidelines

upgrading to, 125

version numbers, 66
versioning, 41

W
wink functions, 77, 90
Wink requests, 109

X
XIF files. See device-interface (XIF) files

Z
zero-length domain, 73

	Introduction
	Introduction to the LonWorks Platform
	Audience
	LonMark Certification
	Character Encoding
	Related Documentation

	Device Interfaces
	Device Interface Overview
	Neuron ID
	Standard Program ID
	Format Field
	Manufacturer Field
	Device Class Field
	Usage Field
	Changeable-Interface Flag
	Functional Profile-Specific Flag
	Usage ID

	Channel Type Field
	Model Number Field

	Device Channel ID
	Device Location Field
	Device Self-Documentation String
	Functional Blocks
	Implementing a Functional Block
	Network Variables
	Implementing a Network Variable
	Changeable-Type Network Variables
	Network Variable Naming Conventions

	Configuration Properties
	Configuration Property Distribution Methods
	Configuration Property Implementation Methods
	Configuration-File Access Methods
	Configuration Property Flags
	Implementing a Configuration Property
	Configuration Property Initializers and Range Modifiers
	Configuration Property Examples

	Device and Functional Block Versioning
	Device Interface (XIF) File

	Resource Files
	Resource File Definitions
	Type Definitions
	Base Types
	Enumeration Types
	Structure Types
	Union Types
	Network Variable Type Definitions
	Configuration Property Type Definitions

	Functional Profiles
	Functional Profile Names
	Functional Profile Numbers
	Inheritance
	Member Names
	Member Numbers

	Language Strings
	Self-documentation String Reference

	Formats

	Identifying Appropriate Resources
	Using Standard Resources
	Proposing New Standard Resources
	Guidelines for New Standard Functional Profiles
	Guidelines for New SNVTs and SCPTs
	Guidelines for New Standard Enumeration Types
	Guidelines for New Standard Formats
	Guidelines for New Standard Language Strings

	Using User Resources

	Managing Resource Files
	Implementing Resource Files

	Network Installation
	Network Addressing
	Address-Table Entries
	Network Variable Aliases
	Domain-Table Entries
	Self-Installed Devices
	Field-Installed Devices

	Passive Configuration Tools
	Service Pin
	Gateways to Command-Based Systems
	Shared-Media Considerations

	Glossary
	Language File Extensions
	Self-Documentation Syntax and Data Representations
	Host-Based Devices
	New Standard Profile and Type Proposal Procedure
	Requirements for Retesting, Upgrading, and Recertifying Devices
	Index

