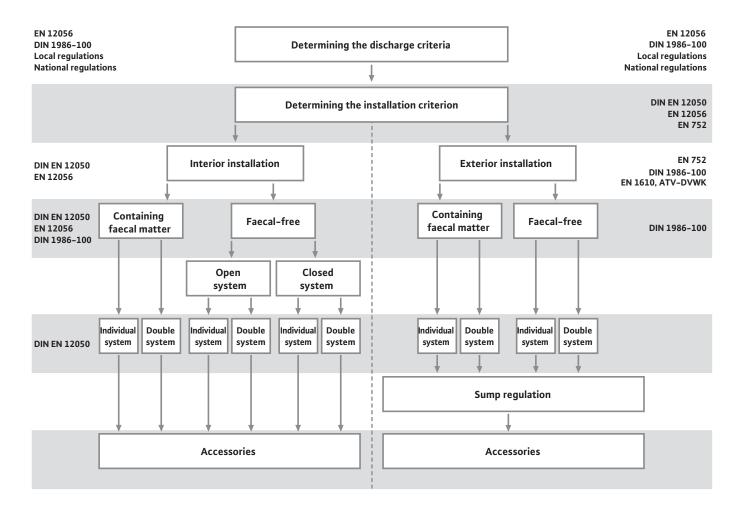


## Sewage Engineering


## Planning Guide

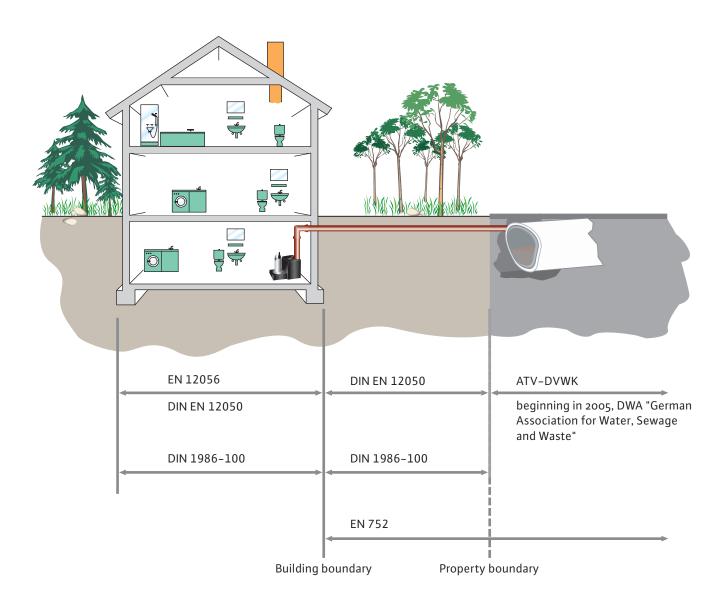


2005



Rough calculation procedure for sewage systems under consideration to normative guidelines




| B | a | S | ic | S |
|---|---|---|----|---|
|   | - |   |    | - |

|                                    | Validity of standards in building drainage                           |    |
|------------------------------------|----------------------------------------------------------------------|----|
|                                    | General basic concepts                                               | 6  |
|                                    | Basic hydraulic concepts and pipelines                               | 17 |
|                                    | Basic electrical concepts and their influences                       | 22 |
| Installation and calculation examp | ples                                                                 |    |
|                                    | General instructions for calculation                                 | 3  |
|                                    | Planning instructions for interior installation                      | 32 |
|                                    | Planning instructions for exterior installation – sump pump stations | 40 |
| Additional planning instructions   |                                                                      |    |
|                                    | Peripherals                                                          | 63 |
|                                    | Selecting switching devices for submersible pumps                    | 62 |
|                                    | Sump design                                                          | 66 |
|                                    | Fault diagnostics                                                    | 67 |
| Annex                              |                                                                      |    |
|                                    | Checklists for installation, operation and maintenance               | 69 |
|                                    | Tables and diagrams for calculation examples                         | 76 |
|                                    | Conversion tables of dimensions                                      | 85 |
|                                    | Abbreviations                                                        | 86 |
|                                    | Standards used                                                       | 86 |
| Index                              |                                                                      | 88 |
| Imprint                            |                                                                      | 91 |



## Basics

Validity of standards in building drainage



Because of the changed structures in Europe, the standards have now been revised (for all EU member states) on a cross-national basis. Country-specific standards have been revised into internationally valid EN standards, each of which contains slight adaptations to the typical situation of each country in its national foreword.

Country-specific, supplementary standards may also be in force, as long as these do not contradict or constrain the valid EN standards (for example, DIN 1986-100 for Germany). For Germany, this does not result in any substantial changes in the way of thinking, as one of the highest standards has since been used as the basis in that country. In addition, the ATV-DVWK (German Wastewater Association) applies in Germany beginning at the property line outside private property. Beginning in 2005, this will be known as the DWA.

The standards are an official guideline with regard to scope of validity, applications, installations, safety precautions and maintenance, and have the status of recognised rules of technology. They are not laws with which compliance is mandatory. However, these standards are applied when difficulties are encountered in judging liability cases. For example, non-compliance can render insurance protection null and void, and the person who has carried out the work can be held liable.

#### General basic concepts

#### **Runoff coefficient C**

Specifies the value or the factor for precipitation relative to the composition of the surface, such as the pavement, on which the precipitation falls and from which it is drained.

#### **Drainage coefficient K**

Specifies the value for the frequency with which drainage sources are used. Accordingly, a nondimensional factor is assigned to every drainage source. (Also refer to Table 1 of the Annex, "Values for characteristic drainage K")

#### Abrasion

Material loss due to frictional contact of solid particles in the sewage fluid and the corresponding surfaces of the installation (such as pump components and pipelines). The most frequent cause of abrasion is sand.

#### **Sewage generation**

The quantity of sewage generated depends on the building type, times of use and the habits of the occupants. Precipitation water is added to the sewage generation. (Also refer to "Combined system" on page 12, "Separate system" on page 14)

#### Sewage types

Sewage is defined as any type of contaminated water generated in the residential or commercial area. This includes rainwater, water that becomes dirty through use, commercially used water etc.

#### **Domestic sewage**

Domestic (household) sewage is a mixture of drinking water and organic and inorganic materials in both solid and dissolved form. Experience has shown that the materials primarily encountered in household sewage are human faecal matter, hair, food waste, cleaning agents and detergents, as well as various types of chemicals, papers, rags and sand (for example in combined systems through rainwater erosion). However, experience has also shown that all kinds of waste are introduced as a result of ignorance or noncompliance, and must then be discharged through the drainage source.

However, the following materials should not reach the domestic sewage stream, as otherwise damage to the system and the adjacent installations is probable:

- Large waste items, such as domestic waste
- Solid particles such as sand, ashes, shards etc.
- Domestic, organic solid wastes such as vegetable waste, peels, bones etc.
- Cloth scraps, feminine hygiene products etc.
- Hazardous materials such as chemically aggressive solvents

#### Rainwater

Unused precipitation water contaminated only by air pollutants, impurities from dirt on the runoff surface or other ecological circumstances. The degree of contamination depends primarily on geography, proximity to cities (air and surface pollution) and frequency of rainfall. Impurities frequently contain oil, salt, sand, or grease.

Precipitation values can differ based on conditions that vary greatly according to climate. The precipitation values are distinguished according to frequency and intensity of rainfall. A table of these reference values is provided in DIN 1986–100 (also refer to Table 4 of the Annex, "Rainfall intensities in Germany").

Because climactic conditions change, consult the German Weather Service or local institutions for more accurate information. A value of 300 l/(s x ha) can be used for rough calculations when flooding must be avoided under all circumstances.





The calculation of rainfall intensity is based on the experience that heavy rains last only a short time and are in the form of downpours. Rain that lasts longer does not have this intensity. The quantity of rain decreases when the duration increases. (Also refer to "Design rainfall intensity" on page 9)

#### Industrial sewage (= industrial water)

Industrial sewage requires more detailed analysis of the fluid, as the chemical components can vary greatly, thus posing a risk of damage to the installation. Corrosion damage is the most frequently observed type of damage. Special attention should be given to sewage from the textile and food processing industries. Impeller type (e.g. blockage), sump dimensioning (because of great differences in drainage) and the material combination (e.g. corrosion) are the central critical points in this regard.

#### Condensates

ATV-DVWK A251 Due to decreased mineral content, the pH value is below neutral (neutral = pH 7). The aggressiveness increases when the mineral content increases. According to German guidelines (such as ATV A251), condensates may not be discharged directly into the sewer system whenever the mixture proportion of sewage containing faecal matter (high pH value before hydrogen sulphide removal) and condensate (low pH value) is classified as critical.

Composition of condensation water (guide value): Oil-fired boilers: 1.8 to 3.8 pH

(neutralisation is mandatory!) Gas-fired boilers: 3.8 to 5.3 pH



- Plants up to 25 kW are classified as harmless, as a sufficient blending of the generated condensate is assumed.
- Plants up to 200 kW are classified as harmless as long as twenty-five times the volume of sewage in proportion to condensate is discharged at the same transfer point, as this also results in sufficient blending.
- Larger plants require a general neutralisation before introduction into the condensate lifting unit or sewer system.

#### Sea water

Sea water generally refers to the water of the oceans with its different salt concentrations. A prerequisite for selecting materials in the design stages is knowing the concentration to which each component will be exposed. Because of the high ionisation, the conductivity is up to 7500  $\mu$ S/m. The fluid already has an increased corrosive effect beginning at a conductivity of 3200  $\mu$ S/m. In conjunction with the influence of the temperature, this causes increased corrosion, as an increasing temperature functions as a reaction accelerator. The following are reference values for the different ion concentrations pertaining to the sodium chloride ions:

| Atlantic Ocean    | 3.0-3.7% = 30-37 g/l |
|-------------------|----------------------|
| Pacific Ocean     | 3.6% = 36 g/l        |
| Indian Ocean      | 3.5% = 35 g/l        |
| North Sea         | 3.2% = 32 g/l        |
| Baltic Sea        | < 2% = < 20 g/l      |
| Caspian Sea       | 1.0-3.0% = 10-30 g/l |
| Mediterranean Sea | 3.6-3.9% = 36-39 g/l |
| Dead Sea          | 29% = 290 g/l        |
| Red Sea           | 3.7-4.3% = 37-43 g/l |

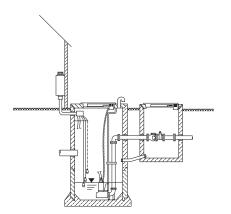
#### **Brackish water**

Brackish water refers to a mixture of different types of water or water-based fluids. Brackish water refers to both a mixture of fresh water and sea water and a mixture of sea water with oils, petrol and faecal components. A non-uniform concentration of components (including those that vary according to time) makes the process of selecting the materials to be used complex. No product selection should ever be made without analysing the water. EN 12056-1

and DIN EN

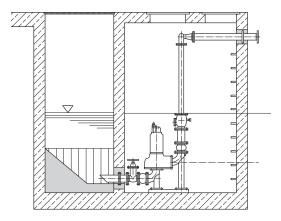
12050-3

#### Limited-use plants

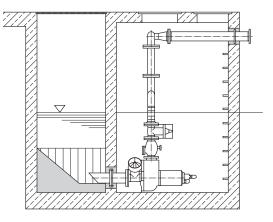

These mini lifting plants (such as the Wilo-Drain-Lift KH 32) are installed immediately behind a toilet located below the backflow level (also refer to page 12). However, the use of these systems is subject to certain restrictions. For example, there must be an alternative toilet above the backflow level for use in case the mini lifting plant fails. In addition, the inlets are restricted to a maximum of one hand wash basin, one shower and one bidet (urinal), all of which must be located in the same room. Bathtubs, washing machines or dishwashers are not permitted. Installation above the backflow level is permitted only in special cases, such as renovations.

#### **Drain connection value DU**

Indicates the average drainage quantity of a drainage source. The values are listed in I/s. (Also refer to Table 2 of the Annex, "Drain connection values (DU) for sanitary fixtures")


#### **Installation types**

#### Stationary wet sump installation

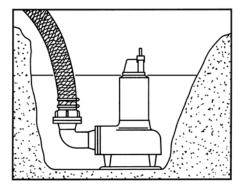



In recent years, prefabricated pump sumps made of concrete and plastic have come into widespread use, as they can be installed quickly and easily, lowering installation costs. The advantages of pumps in wet sump installations lie in cost and space considerations, as a separate pump chamber is not required for pump installation as is the case in dry sump installation. On the other hand, when maintenance is required, the effort for checking and repairing the pump is increased due to the need to lift the pump. For these complete solutions, which are offered by most pump manufacturers (such as the Wilo– Drain WS), the sumps are already adapted to an optimum geometry that will guarantee durability and a long service life. In addition, all components are matched to each other, and all accessories are included in the scope of delivery.

## Stationary vertical dry sump installation



Stationary horizontal dry sump installation




In the past, many pumping stations were equipped with glanded pumps. However, this has changed for the reasons listed below, with the result that more pump stations are being installed with dry submersible pumps, regardless of whether they are installed horizontally or vertically.

#### The reasons > advantages:

- Flood-proof > Operational reliability
- No stuffing box seals, instead low-maintenance SiC/SiC mechanical seals
   > Cost reduction
- No couplings or V-belts, meaning fewer wear parts and less maintenance effort
   > Cost reduction
- No sealing water connections or separate grease lubrication > Cost reduction
- Integrated forced-flow casing cooling
   Noise reduction
- Easy access for maintenance and repair
- > Cost reduction

#### Portable wet sump installation



In portable wet sump installation, the units are equipped with a pump base. The delivery connection is either flexible (high-pressure hose) or rigid (via pipeline). For draining pits or tanks, the pumps are temporarily lowered into the fluid.



It should be ensured that the pumps are positioned on the foundation in a way that is solid and torsion-proof and thus cannot begin to drift or twist. In addition, the units may not be operated suspended from a chain or the cable. Portable set-ups are temporary installations! If they are used as a long-term solution, reduced service life caused by increased vibrations and corresponding negative effects on the pump should be taken into account.

#### **Buoyancy protection**

Buoyancy protection is a means of anchoring a unit/pump to the floor (or to the underground sump) to prevent it from buoying upwards in case of flooding of the area (or increased groundwater level), as this could cause damage to connections/pipelines which could, in turn, cause fluid leaks. The buoyancy protection is located directly on tanks, is retrofitted, or is integrally cast.

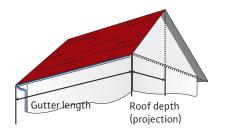
#### Ventilation

Air vents are permitted in compliance with prEN 12380 for gravity drainage systems. The dimensioning must be carried out in conjunction with the connection pipe or wastewater downpipe. Ventilation of lifting plants must be in accordance with EN 12056-1.

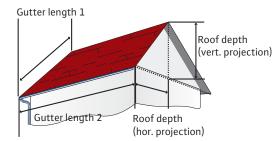
#### prEN 12380 EN 12056-1

#### **Design rainfall intensity**

The value is defined by local authorities. Reference values are provided in DIN 1986-100 and ATV-DVWK A 118, Tab. 3. A minimum value of r5 (0.5) is to be assumed. If no value is specified for r, 200 l/ (s x ha) can generally be assumed for surfaces with limited infiltration. If flooding must be generally prevented, experience has shown that a value of 300 l/(s x ha) can be used for calculation. However, the specifications of the authorities must always be followed. (Also refer to "Sewage types – Rainwater" on page 6)




EN 12056-3


#### Roof area (effective)

The roof area necessary for the calculation is determined by multiplying the gutter length of the roof by the horizontally projected roof depth. The effect of wind is generally not taken into consideration unless required by applicable national legal directives. This calculation must be carried out for each roof area.

#### Without effect of wind



#### With effect of wind



For rain vertical to roof area:

Roof area = gutter length 1 x gutter length 2

#### Driving rain 26° to vertical:

Roof area = gutter length 2 x [roof depth (hor) + 0.5 x roof depth (vert)]

The wall area onto which the rain is being driven must also be taken into consideration with effect of wind. It is added to the roof area. This means the following:

```
Wall area for rain calculation = 0.5 x wall area
```

Total area = roof area + wall area for rain calculation

#### DIN 1986

In Germany, parts of the DIN are valid only as remaining standards. DIN 1986 has been replaced by new standards such as DIN EN 12050 and EN 12056. Today, it is applied in Germany, in the form of DIN 1986–100, only as a supplemental standard to EN 752.

#### **DIN EN 12050**

The geographic scope of this international standard is the EU. All EU countries are required to follow the specifications and instructions of this standard. DIN EN 12050, along with its parts, applies to the principles of construction and testing of plants and check valves.

#### **DU value**

See "Drain connection value DU" on page 8

## Pressure drainage (in accordance with ATV-DVWK data sheet A116)

If a gravity sewer system (gravity drainage) is not possible or sensible for geographic or cost reasons, pumping stations can be used for drainage. The pipelines can be laid as a ring network or branched network from the drainage area to the treatment plant.

For pump units without macerators, the pipeline diameters should be DN 80 with PN 10. For pumps with macerators, pipes with a diameter of DN 32 can be used. Pressurised air flushing stations support the removal of the wastewater by regulating the flow and discharge processes. This type of installation provides the advantages of a shorter retention time of the wastewater, reduced encrustation, and the injection of oxygen. The pump output should guarantee a complete exchange of the pipeline volume every 4–8 hours (every 4 hours in the main and collecting dis– charge pipelines, every 8 hours in the discharge pipeline).



DIN EN 1250





Other good reasons to use pressure drainage systems include:

- Insufficient terrain gradient
- High groundwater level
- Low population density
- Difficult subsoil
- Intermittent sewage generation (campgrounds, excursion restaurants etc.)
- Environmental concerns

### Evaluation of installation types

| and dramage rechniques                                                              | 5               |               |                 |
|-------------------------------------------------------------------------------------|-----------------|---------------|-----------------|
|                                                                                     | Indoor          | Outdoor       | Pressure        |
|                                                                                     | installation*   | installation* | drainage        |
| Unwanted odour                                                                      | -               | 0             | 0               |
| Unwanted noise                                                                      | 0               | +             | +               |
| Pipeline costs                                                                      | 0               | -             | +               |
| (costs for laying pipeline                                                          | )               |               |                 |
| Installation costs                                                                  | +               | -             | -               |
| Ease of maintenance                                                                 | ++              | 0             | +               |
| Follow-up costs in case<br>of malfunction such as<br>failure of the power<br>supply |                 | 0             | 0               |
| Combined water<br>(with rainwater)                                                  | not<br>possible | +             | not<br>possible |

\* without comminution

- ++ Very good
- + Good
- o Moderate
- Poor
- – Very poor

#### **Electrical conductivity**

Electrical conductivity is of importance both for some level measuring systems and the lifetime of units. It identifies the salt concentration in fluids. The conductivity is generally specified in  $\mu$ S/cm (=10-4 S/m) or  $\mu$ S/m.

#### EN 12056

EN 12056

The geographic scope of this international standard is the EU. All EU countries are required to follow the specifications and instructions of this standard. This standard is preceded by a national foreword for each member country. Its parts relate to the use of gravity drainage systems inside buildings. Thus, for example, the required installation space for lifting plants is defined in accordance with EN 12056-4, 5.1, as is tensionfree installation, meaning that the weight of fittings and pipelines is supported. The maintenance intervals required for proper operation are also specified.

#### Fluid

Correct design and selection of a pump require exact knowledge of the pumped fluid. When a pump is used, this need not refer exclusively to sewage. The properties of sewage pumps mean that they can pump a variety of other fluids. For a more precise definition of sewage, see "Sewage types" (page 6), "Materials properties" (page 16), "Free ball passage" (page 19), "Impeller types" (page 21).

#### Noise development (also refer to "Sound insulation")

When planning a building, the noise behaviour of an installation must be taken into consideration, as this creates a stress factor over the long term. The individual acceptable stress loads are defined in accordance with EN 12056-1 in the corresponding national and regional directives. In Germany, DIN 4109 is applied here. Thus, the maximum permitted noise level in the adjacent room is 30 dB[A].

#### Corrosion

The term "corrosion" refers to the reaction of a material with its gaseous or liquid environment. This reaction causes a structural change of the surface of the material and thus an impairment of its original function. The strength of the corrosion depends on the combination of the material with the aggressiveness of the fluid. Experience has shown that plastics and ceramic materials are the most resistant.

When metallic materials are used, weak points are damage to the surface or welds and connecting seams.

#### Chlorides

Chloride ions are aggressive towards metallic materials, which results in pitting of the metallic material beginning at a concentration of ~150 mg/l.

#### DIN 4109





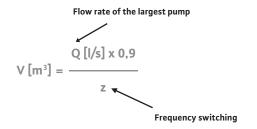
#### Nitrates

Nitrates are aggressive towards metallic materials even at low concentrations. Concentrations of up to 30 mg/l are enough to cause corrosion of metals with low overall hardness.

#### Nitrites

Nitrites are components of sewage containing faecal matter and are corrosive even at low concentrations.

#### Sulphates


Sulphate ions are aggressive towards all materials of metallic structure and towards concrete. They cause pitting beginning at concentrations of 250 mg/l, and decompose concrete at even lower concentrations. In this case, PE sumps are recommended.

#### **Combined system**

Sewage system that drains rainwater, contaminated sewage and water containing faecal matter through one pipeline. Information on whether use of a combined system is possible is provided in local statutes or can be obtained from municipal authorities.

#### Usable volume (= required impoundment volume)

The usable volume-also referred to as the required impoundment volume-generally refers to the volume between the cut-in and cut-out points of the pump. In special cases in which the inlet to the pumping station lies below the cut-in point of the pump and thus becomes backed up, the inlet volume can be used to cover the required impoundment volume. It should be exchanged during each pumping process.



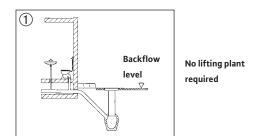
#### pH value

The pH value indicates the aggressiveness of the water or of the hydrogen ion concentration. The water can contain salts, nitrates, sulphur or carbon dioxide components. Sulphates, sulphides, fats, petrols and solvents can also have an effect on the aggressiveness. On the other hand, if minerals are lacking, such as in partially or fully desalinated water, this also means increased aggressivity (here, for example, it means that the pH value sinks below the neutral level).

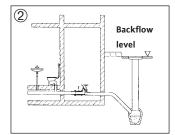
#### • pH 0 to 3.9 = Highly acidic

(such as sewage from beer brewing\* ~4, condensates from gas-fired boilers ~3.5, condensates from oil-fired boilers ~2.0)

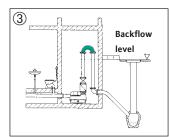
- pH 4 to 6.9 = Weakly acidic (such as river water or fresh water from lakes\* ~5.5, sewage after hydrogen sulphide removal < 6.5)</li>
- pH 7 = Neutral
   pH 7.1 to 10 = Weakly alkaline (such as sewage from slaughterhouses\* ~8.2, sea water ~8)
- pH 10.1 to 14 = Strongly alkaline (such as sewage containing faecal matter before hydrogen sulphide removal ~10.5) \*Specifications for approx. 20°C


Domestic sewage is generally in the range from pH 6.5 to pH 7.5. In combined water systems, the more mineral-poor water (lower pH value) is mixed with salt-rich and mineral-rich water, which causes a relativisation (depending on the mix proportion) to a more neutral level.

#### **Backflow level**

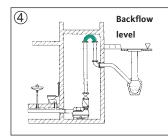

Highest point in an installation to which the contaminated water can rise. The backflow level is in the area of the largest increase of diameter. Installations should be designed such that the water of the sewer system cannot flow back into the pumping station. This could happen in case of storms, floods and heavy rainfall if the municipal sewer system is not designed for such quantities. Damage caused in this way is not covered by insurance, and lawsuits are seldom successful. It is the responsibility of the owner/operator to provide protection. Information specifying the height of the backflow level is included in local statutes. Experience has shown that for rough calculations, the street level can be assumed as the backflow level.

#### EN 12056-1


#### Installation above the backflow level



#### Installation below the backflow level




The use of a non-return seal is permitted for pump chambers, but does not provide 100% protection.



The use of a lifting plant provides guaranteed protection from backflow of fluid and reliable removal of the sewage by using a backflow loop.

## Installation below the backflow level without natural gravity flow to the sewer system



The sewage can be removed only with the help of a lifting plant.

Reasons for a backflow can include unusually heavy rains, reduction of the free passage of the pipe due to encrustation or obstruction, as well as technical failures of downstream pump stations.

#### **Backflow loop**

A backflow loop is a pipeline that is artificially elevated (above the backflow level; also refer to "Backflow level" on page 12, graphics 3 and 4), so that backflowing water can first spread through all of the lower-lying empty spaces. Since it is to be assumed that sufficient volume is available in the entire pipeline system, the backflow loop is the most reliable alternative for backflow prevention.

If backflow protection is insufficient or lacking entirely, the liability falls on the person who carried out the work, and the homeowner loses insurance protection.

#### Sump cover

Sumps are divided into certain load-carrying capacity classes. These classes are primarily defined by the dome and cover construction, while the strength of the shaft itself is defined by the earth pressure.

| Class A: | Able to be walked on | Pedestrian paths, bicycle paths             |
|----------|----------------------|---------------------------------------------|
| Class B: | Able to be driven on | Pedestrian paths, pedestrian areas,         |
|          | with restrictions    | automobile parking areas, parking decks     |
| Class C: | Able to be driven on | Kerb edge area within limits                |
|          |                      | (protruding onto the roadway up to 0.5 m)   |
| Class D: | Able to be driven on | Street roadways, road shoulders, parking    |
|          |                      | areas, lorry traffic areas, logistics areas |
|          |                      | and industrial areas with forklift traffic  |
| Class E: | Able to be driven on | Dock facilities, aeroplane runways          |
| Class F: | Able to be driven on | Aeroplane runways                           |

#### Sound insulation (also refer to "Noise development")

For installations, suitable measures must be taken from the beginning to keep unwanted noise to a minimum. This is because retrofitted solutions are associated with high costs and/or decreased value of the entire area. The guideline for this is DIN 4109.

Suitably dimensioned fittings and appropriate flow velocities in pipelines, as well as appropriate wall ducts, can already reduce unwanted noise in advance. A maximum noise level of 30 dB[A] is permitted in living spaces and bedrooms. In classrooms and workspaces, a level of max. 35 dB[A] is permitted. This does not include short-term noise level peaks caused by valves, fittings etc. DIN 4108

EN 124

If this is not complied with, a great disturbance can be caused by filling noises (for example, when the water jet hits the pipe wall) or emptying noises (excessive flow velocity, strong change in direction of flow etc.). As these noises are carried along through the pipelines and fluid by vibrations, suitable measures (baffles, flow velocity guide values, pipeline materials etc.) must be taken to counteract them.

#### Separate system

Drainage system in which rainwater and wastewater are drained in separate pipelines. The different types of sewage must also be separated if the sewage lifting unit is located inside the building.

Ŵ

Rainwater must not be piped into the building! (Also refer to local statutes and/or municipal authorities)

#### Maintenance

EN 12056-4

Refers to the technical inspection and, when required, replacement of components/wear parts that guarantee long-term operation of the system and protect it from damage and failure. Depending on the operating conditions and type of plant system, the following intervals are recommended or required by EN 12056-4:

Private use in small buildings (single-family homes): Annually Multi-family homes and apartments: Every 6 months Commercial use: Quarterly

#### Water hardness

Water hardness refers to the concentration of alkaline earth ions. These are primarily chlorides, sulphates, hydrogen carbonates etc. The hardness categories are soft (total hardness up to 7 degrees of German hardness), medium-hard (up to 14 degrees of German hardness), hard (up to 21 degrees of German hardness) and very hard (> 21 degrees of German hardness). The higher the degree of hardness, the more ions are present in the water. Today, the term "degree of German hardness" (°d) is no longer used; the technical term mmol/l is used instead.

| Total hardness<br>[mmol/l] | [°d] (rounded) | Classification |
|----------------------------|----------------|----------------|
| 0-1                        | 0-6            | Very soft      |
| 1-2                        | 6-11           | Soft           |
| 2-3                        | 11-17          | Medium-hard    |
| 3-4                        | 17-22          | Hard           |
| > 4                        | >22            | Very hard      |

#### **Materials**

#### ABS (acrylonitrile butadiene styrene)

Temperature-resistant, non-flammable plastic with excellent impact strength and good strength properties. It is used in the Wilo-DrainLift Con condensate lifting plant, for example.

#### Concrete

Material for building sumps in accordance with DIN 4034-1. The concrete quality used by Wilo corresponds to DIN EN 206 (formerly known as DIN 1045). The exact designation is B45WU, and it has a maximum water penetration depth of 30 mm as prescribed by the standard. Experience has shown that the maximum penetration depth of the Wilo-DrainLift WB is only around 20 mm. The following substances are aggressive towards concrete: fluids with pH value < 6.5, sulphuric acid, hydrochloric acid, butyric acid, lactic acid, sulphates, salts, and animal and vegetable fats and oils.

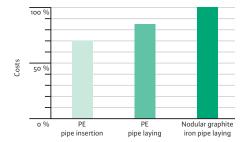
#### **Cast iron**

Cast iron is the standard material used in pump construction. For years now, most pumps have been made of cast iron. The primary advantages of cast iron are its price and robustness.

#### Stainless steel 1.4301 – V2A (AISI 304 – X5CrNi18-10)

The name "V2A" originates from the definition of Thyssen Krupp (the German "Versuchsreihe 2 Typ Austenit") for a chrome-nickel steel. This is the

#### DIN EN 206 and DIN 4034-1


stainless steel standard generally used in the pump industry, which combines good strength properties with good temperature resistance. In addition, the material has very good resistance to organic solutions. (Also refer to "Materials properties" on page 16)

#### Stainless steel 1.4404 – V4A (AISI 316L – X2CrNiM017-12-2)

The name "V4A" originates from the definition of Thyssen Krupp (the German "Versuchsreihe 4 Typ Austenit") and refers to a more highly alloyed stainless steel (compared to 1.4301) with a molybdenum component that can sometimes also be used in sea water. High strength and elasticity are distinguishing characteristics that make stainless steel superior to cast iron. (Also refer to "Materials properties" on page 16)

#### HDPE (high-density polyethylene)

The most frequently used pipe material for sewer pipelines, with very good chemical resistance and extremely low surface roughness to prevent deposits and flow losses. Additional advantages are high impact strength and tensile strength with little temperature effect. The material PE100 is being used more and more in practical applications, where it is replacing PE80 and nodular graphite iron. Advantages such as pipe insertion for renovations provide a high cost savings potential (also refer to "Materials properties" on page 16)



#### Materials-standards table

| <b>DIN description</b> | <b>US description</b> | Chemical abbreviation | Stan     | dard        |
|------------------------|-----------------------|-----------------------|----------|-------------|
|                        |                       |                       | European | American    |
| Material No.           | AISI                  |                       | EN       | ASTM        |
| Austenitic steels      |                       |                       |          |             |
| 1.4301                 | 304                   | X5CrNi18-9            | 10088-3  | A 167 / 276 |
| 1.4401                 | 316                   | X5CrNiM017-12-2       | 10088-3  | A 167 / 276 |
| 1.4404                 | 316 L                 | X2CrNiM017-12-2       | 10088-3  | A 167 / 276 |
| 1.4571                 | 316 Ti                | X6CrNiMoTi17-12-2     | 10088-3  | A 167 / 276 |

#### PP (polypropylene)

Temperature resistance and chemical resistance are the distinguishing features of this material. Due to the high impact strength of the material, it is extremely robust. (*Also refer to "Materials properties" on page 16*)

#### PUR (polyurethane)

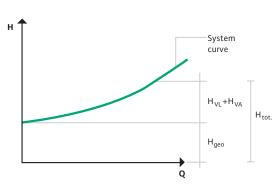
PUR is available in many variations. Baydur GS, which has proven itself in industrial applications and is also used by Wilo, features high chemical resistance, for example to dilute acids, alkalines, motor oils, fats, petrols etc., and corrosion and microbial resistance. These outstanding advantages make it ideally suited for use in aggressive fluids. It also features superior wear resistance, resistance to rotting, weather resistance, thermoforming resistance and impact strength, all at a significantly lower weight than metallic materials such as cast iron. (*Also refer to "Materials properties" on page 16*)

#### PVC (polyvinyl chloride)

PE sumps are designed in accordance with DIN 19537-1 and provide great advantages compared to conventional concrete sumps, including durability, flexibility, ease of installation and reduced installation costs. This flame-retardant material unites mechanical strength and chemical resistance. (Also refer to "Materials properties" on page 16)

DIN 8078




#### DIN 8061

| Designation                                  | Temperatures<br>of use [°C] | Resistant to                                                                                                    | Not resistant to                                                                       | Application areas                                                     |
|----------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Seal materials                               |                             |                                                                                                                 |                                                                                        |                                                                       |
| EPDM                                         | -30 to +120<br>-30 to +120  | Water without chemi-<br>cal additives, caustic<br>sodas, hydrochloric<br>acid, phosphoric acid,<br>saline water | Fuels,<br>kerosene,<br>sulphuric acid,<br>nitric acid                                  | Housing seals,<br>mechanical seal<br>bellows                          |
| FPM (= Viton)                                | -25 to +140                 | Sewage with pH 3 to<br>pH 10, fuels, petroleum<br>oils, phosphoric and<br>sulphuric acid                        | Acetic acid,<br>nitric acid,<br>benzene                                                | Housing seals,<br>mechanical seal<br>bellows                          |
| NBR                                          | -30 to +100                 | Sewage with pH 6 to<br>pH 10, water without<br>chemical additives,<br>fuels, petroleum oils,<br>saline water    | Nitric acid,<br>sulphuric acid                                                         | Housing seals,<br>mechanical seal<br>bellows                          |
| Housing materi                               | als/peripheral mate         | rials                                                                                                           |                                                                                        |                                                                       |
| PE                                           | o to +90                    | Sewage with pH 4 to<br>pH 9, water without<br>chemical additives,<br>inorganic weak fluids                      | Concentrated acids<br>and alkalines                                                    | Pump housing,<br>impellers, pipelines,<br>sumps and fitting<br>shafts |
| РР                                           | o to +90                    | Sewage with pH 4 to<br>pH 9, water without<br>chemical additives,<br>inorganic weak fluids,<br>saline water     | Concentrated acids<br>and alkalines                                                    | Pump housing,<br>impellers, non-returr<br>valves, sumps               |
| PUR                                          | o to +80                    | Sea water <sup>*)</sup> , acids,<br>bases, pH 3 to 13, fats,<br>machine oils, petrol                            | Extremely<br>aggressive acids<br>and bases                                             | Pump housing,<br>impellers, fasteners,<br>agitators                   |
| Stainless steel<br>1.4301<br>(AISI 304, V2A) | -20 to +120                 | Petroleum oils, water<br>without chemical<br>additives, alcohols                                                | Sea water <sup>*)</sup> ,<br>hydrochloric acid,<br>concentrated acids<br>and alkalines | Motor housing,<br>hydraulic housing,<br>impellers                     |
| Stainless steel<br>1.4404<br>(AISI 316, V4A) | -20 to +120                 | Petroleum oils, water<br>without chemical<br>additives, alcohols,<br>sea water* <sup>)</sup>                    | Sea water* <sup>)</sup> ,<br>hydrochloric acid,<br>concentrated acids<br>and alkalines | Motor housing,<br>hydraulic housing,<br>impellers                     |

\*) Limited resistance depending on the fluid temperature and other organic and inorganic fluid contents

#### Basic hydraulic concepts and pipelines

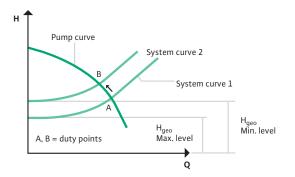
#### System curve (pipeline curve)



$$\begin{split} H_{DP} &= \text{Pressure drops (losses) in pipelines} \\ H_{DF} &= \text{Pressure drops (losses) in fittings} \\ H_{geo} &= \text{Geodetic height difference} \\ & (\text{geodetic height to be overcome}) \\ H_{Tot} &= \text{Total head losses} \end{split}$$

The system curve shows the delivery head required by the system  $H_{Tot}$ . It consists of the components  $H_{geo}$ ,  $H_{DP}$  and  $H_{DF}$ . While  $H_{geo}$  remains (statically) independent of the flow rate,  $H_{DP}$  and  $H_{DF}$  increase (dynamically) through the different kinds of losses in pipelines, fittings, moulded parts, increases in friction due to temperature etc.

#### **Connecting sewer/pipe**


DIN 4045

In accordance with DIN 4045, describes the connection between the public sewer and the property boundary.

#### **Duty point**

The duty point is the point of intersection of the system curve and the pump curve. For fixedspeed pumps, the duty point adjusts itself automatically.

Example: fluctuating water level in the tank



The duty point changes if, for example, the geodetic delivery head fluctuates between a minimum and a maximum value in a stationary sewage pumping station. This changes the flow rate supplied by the pump, as the pump can only achieve duty points that are on the pump curve.

Reasons for fluctuation of the operating point could include different water levels in the sump or tank, as in this case the intake pressure of the pump changes due to the different levels. On the end discharge side, this change can also be caused by clogging of the pipelines (encrustation) or throttling by valves or consumers.

#### **Discharge pipeline**

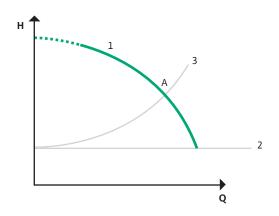
This term refers to the pipes to the adjacent systems or pumps. The pipe diameters used are specified in DIN EN 12050-1 and EN 12056-4. For systems without comminution devices, a minimum nominal diameter of DN 80 is required; for systems with comminution devices, it is DN 32.



#### Water hammer

Water hammers are impacts in the pipeline system caused by changes in speed. Depending on their strength, they can damage or destroy the installation. Particularly at risk are installations in which the pipes are laid such that they are not on a steady incline or descent. As the water column can break away at the high points (vacuum formation), or increased pressure can be generated when the water columns collide, the pipes can burst.

Particularly at risk for this are very large pipelines and systems with excessive flow velocities.




#### **Pressure drops in pipelines and fittings**

Pressure drops are reductions in pressure between the inlet and outlet of the component. These components include pipelines and fittings. The losses are due to turbulence and friction. Each pipeline and fitting has its own specific drop value depending on the material and surface roughness. Refer to the manufacturer's specifications for specific information. An overview of the fittings used by Wilo and their drop value is provided in the Annex. (Also refer to Table 6 of the Annex, "Pressure drops relative to flow rates of HDPE plastic pipes")

#### **Individual operation**

Refers to operation of a pump in an installation in which the duty point of the pump is at the intersection of the pump curve and system curve.



- 1 = Pump curve
- 2 = Required geodetic delivery head
- 3 = Losses in fittings and pipeline due to
- flow velocity/flow rate A = Duty point of the pump

#### Ventilation

DIN EN 12050-1 and EN 12056-2 The design of the ventilation line for installations in buildings is described in DIN EN 12050-1, 5.3. In accordance with the standard for lifting plants for wastewater containing faecal matter, a ventilation line (ventilation above roof level) with at least DN 50 is currently adequate, while the old national guideline, DIN 1986, prescribed DN 70. This vent line may feed into both the primary and the secondary line. A ventilator/vent valve is not permitted as a replacement for a vent line of a lifting plant for wastewater containing faecal matter. Ventilation is required for wastewater lifting plants, but the type and method are not specified by EN 12056-2. The ventilation should be routed above roof level or equipped with an active carbon filter.

#### Downpipe

Refers to all vertical pipes in and on the building, with vents above roof level where applicable.

#### **Flow velocity**

Solids and suspended matter in the sewage can cause deposits in pipelines and thus clog the drainage system. To prevent pipelines from clogging, we recommend observing the following minimum flow velocities:

| Gravity drainage                        |                              |                                   |
|-----------------------------------------|------------------------------|-----------------------------------|
| Standard                                | Value in accordance          | Recommendation                    |
|                                         | with standard                |                                   |
| Horizontal pipelines                    |                              |                                   |
| _                                       |                              | $V_{min} = 0.7 - 1.0 \text{ m/s}$ |
| Vertical pipelines                      |                              |                                   |
| _                                       |                              | V <sub>min</sub> = 1.0-1.5 m/s    |
| Sewer lines                             | Value in accordance          |                                   |
| _                                       | with standard                | $V_{min} = 2.0 - 3.0 \text{ m/s}$ |
| Pressure drainage                       |                              |                                   |
| Standard                                | Value in accordance          | Recommendation                    |
|                                         | with standard                |                                   |
| Pressurised-air                         |                              |                                   |
| flushed pipeline                        |                              |                                   |
| EN 1671                                 | $0.6 \le V_{min} \le 0.9$    | $0.7 \le V_{min}$                 |
| Non-flushed pipelines<br>ATV-DVWK A 134 | 0.5 < V <sub>min</sub> < 0.9 | $0.7 \leq V_{min} \leq 2.5$       |

Depending on the composition of the fluid (e.g. high sand content, pumping of sludge), the values indicated above may be higher. However, the applicable regional and national standards and guidelines must be followed. The flow veloc-ity is determined by the flow rate (m<sup>3</sup>/s) per unit of surface area (m<sup>2</sup>) and should generally be between 0.7 m/s and 2.5 m/s. The following points must be considered when selecting a pipeline diameter:

The greater the flow velocity, the fewer deposits there will be and thus less risk of clogging. However, the resistances in the pipelines increase when the flow velocity increases, which causes the system to become inefficient and can cause premature damage to system components through abrasive components of the fluid.





#### Free (ball) passage

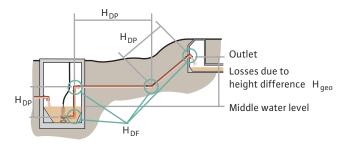
Because fluids vary in content and composition, sewage pumps and their hydraulic parts are adapted accordingly. However, it must be considered which impeller design will best suit the respective fluid and its composition.



Note, however, that enlarging the free passage means reducing the hydraulic efficiency. As a result, more motor power is necessary to achieve the same hydraulic results, which affects operating and procurement costs. Therefore, careful design is essential from an economic standpoint.

| Sewage that is fre      | e of faecal matter (= wa                 | stewater)                    |
|-------------------------|------------------------------------------|------------------------------|
| Required                | Recommended                              | E.g. Wilo                    |
| free passage            | hydraulics                               | series                       |
| Drainage water          |                                          |                              |
| 10–14 mm                | Free-flow, multi-vane                    | TMW, TS, CP, TC 40,<br>VC    |
| Leachate                |                                          |                              |
| 10–14 mm                | Free-flow, multi-vane                    | TMW, TS, CP, TC 40,<br>VC    |
| Domestic sewage         |                                          |                              |
| 10–12 mm                | Free-flow, multi-vane                    | TMW, TS, CP, TC 40           |
| Rainwater, smaller      | runoff surfaces <sup>1)</sup> , larger r | unoff surfaces <sup>2)</sup> |
| 12-35 mm                | free-flow, single-vane,                  | TMW, TS, CP, TC 40,          |
| 35-50 mm <sup>1)</sup>  | multi-vane                               | TP 50-65, TP 80-150,         |
| 70-100 mm <sup>2)</sup> |                                          | STC 80-100                   |
| Commercial waster       | water                                    |                              |
| 35–50 mm                | Free-flow, multi-vane                    | TC 40, TS, TP 50-65,         |
|                         |                                          | TC 40, TP 80-150,            |
|                         |                                          | STC 80-100,                  |
|                         |                                          | STS 80-100                   |
| Wastewater from p       | ump stations                             |                              |
| ≥100 mm                 | Free-flow, single-vane,                  | TP 100-150,                  |
|                         | multi-vane                               | STS 100, TP 80               |
| Wastewater conta        | ining faecal matter,                     |                              |
| combined water (=       | = sewage)                                |                              |
| Required                | Recommended                              | E.g. Wilo                    |
| free passage            | hydraulics                               | series                       |
| Domestic sewage         |                                          |                              |
| 10-80 mm                | Single-vane, free-flow                   | MTS 40, TP 50-100            |
| Macerator               |                                          |                              |
| Commercial sewag        | е                                        |                              |
| < 80 mm                 | Single-vane, free-flow                   | TP 80-150,                   |
|                         |                                          | STC 80-100,                  |
|                         |                                          | STS 80-100                   |

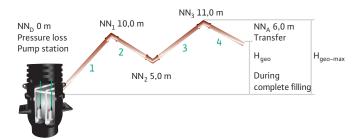
#### **Gravity drainage line**


In a gravity drainage line, drainage is brought about by geodetic gradient. The line is filled only partially, to the crest of the pipe.



#### **Delivery head**

The delivery head H of a pump refers to the energy difference of the fluid between the inlet and outlet of the pump. The unit of delivery head is m or bar (10 m ~ 1 bar). The energy amounts are expressed as energy head (= delivery head). The pressure is a component of the energy head, but is used conversationally as a synonym for energy difference (energy difference = pressure).


The delivery head (energy difference) that must be supplied by the pump is the sum of the geodetic height difference (= static head difference) and the pressure drops (= drop in metres) in pipelines and fittings.



 $H_{DP}$  = pressure drops in pipelines  $H_{DF}$  = pressure drops in fittings and bends

#### (Also refer to "System curve" on page 17)

When specifying the delivery head, it must be ensured that the pressure is designated exactly. There is a fundamental difference between the pressure at the optimum duty point, the pressure at the best efficiency of the pump ( $H_{opt}$ ) and the maximum pressure of the pump ( $H_{max}$ ). If specifications are misunderstood, resulting in oversizing or selection of pumps that are too small, this can cause damage to the installation and the unit and short-term failure of the systems. Possible high points must be given due consideration here, i.e. the maximum highest point of the pipeline is  $H_{geo-max}$ . For discharge pipelines that are installed at varying inclines and have no ventilation, the individual values must be added according to the changes in height. This is due to the fact that, because of the individual height differences, it is most probable that the lines will be partially filled, and thus multiple superimposed water columns must be added.



NN -1,0 m Cut-out water level

For partially-filled lines, the ascending partial lines are added:

#### $H_{geo-max} = (NN1 - NN) + (NN3 - NN2)$ = [10 m - (-1 m)] + (11 m - 5 m) = 17 m

Were we to assume complete filling of the pipeline system, we would only need to calculate the geodetic height difference between the middle water level of the tank and the transfer.

When completely filled:

#### Aid to calculation:

For pump start without ventilation: Add all ascending lines (line 1 + line 3), as the air in the descending line (line 2) is compressed. Therefore, a high pressure is required to overcome the high points.

During operation without ventilation: After the air has been pushed out of the pipeline, the pipeline is completely filled. Therefore, the pressure that must be supplied by the pump is only the maximum geodetic height difference  $H_{geo}$  between the outlet/transfer NN<sub>A</sub> and the cut-out water level in the sump NN.

Pump start with ventilation: Here, the pressure differential between the water level in the sump (pump cut-in point) and the highest point of the system,  $H_{geo-max}$ , must be considered.

During operation with ventilation: During operation, the pump behaves in the same way described under "without ventilation" above.

Therefore, for proper operation of the pump, complete filling and partial filling amounts must be calculated, as the duty point can change drastically, causing the pump to operate outside the permitted ranges.

#### Flow rate (= delivery rate = flow rate)

The flow rate Q is the hydraulic flow rate supplied by the pump (quantity of fluid pumped) within a certain unit of time, such as l/s or m<sup>3</sup>/h. The circulation required for internal cooling and leakage losses are power losses which are not included when calculating the flow. When specifying the quantity to be pumped, it must be specified whether this is the best point of the pump ( $Q_{opt}$ ), the maximum required flow rate ( $Q_{max}$ ) or the minimum required flow rate ( $Q_{min}$ ) in operation.

If specifications are misunderstood, resulting in oversizing or selection of pumps that are too small, this can cause damage to the installation and the unit, as well as their short-term failure.

#### Ground pipe

Refers to the underground drainpipe to the sewer.



#### Cavitation (see also NPSH)

Cavitation refers to the formation and implosion of gas bubbles (cavities) as a result of local negative pressure formation under the vaporisation pressure of the fluid at the impeller inlet. This results in decreased output (delivery head) and efficiency, and causes rough running, noise and material damage to the interior of the pump. Through the expansion and collapse (implosion) of tiny air bubbles in areas of higher pressure (for example, in an advanced state, at the impeller outlet), microscopic explosions cause pressure impacts that damage or destroy the hydraulics. The first signs of this are noise from or damage to the impeller inlet.

The damage to the material depends on its composition. Thus, a stainless steel casting 1.4408 (AISI 316) is approximately 20 times more resistant than the standard material of the pump industry, cast iron (GG 25). For bronze, twice the lifetime can still be assumed.

Taking advantage of the relationship of flow velocity, pressure and the corresponding evaporation temperature helps to prevent cavitation. A high flow velocity means low pressure, which, in turn, results in a lower boiling point of the fluid. Thus, for example, the formation of gas bubbles can be decreased/prevented by increasing the inlet pressure (for example, by increasing the water coverage, higher water level in the sump). Additional starting points are provided in the chapter on "Fault diagnostics" on page 67 ff.

#### Impeller types – Advantages of use

Single-vane or multi-vane impellers are suitable for fluids that contain solids. They are also used in rainwater, cooling water, process water and industrial water applications.

The free-flow impeller is optimally suited to fluids with long-fibre particles, as this impeller type does not tend to develop bunches of entangled fibres. Because if its robustness and quiet running, this shape is ideal for applications in building technology. Another outstanding feature of this type is its high wear resistance to abrasive components of the fluid such as sand.

#### Recommendations

|                     |                                 | 6                              | 5                     |
|---------------------|---------------------------------|--------------------------------|-----------------------|
|                     | Open<br>single-vane<br>impeller | Open<br>multi-vane<br>impeller | Free-flow<br>impeller |
| Clog-free operation | ••                              | •                              | •••                   |
| Gaseous fluids      | •                               | •                              | 0                     |
| Mud                 | •                               | •                              | •                     |
| Efficiency          | ••                              | ••                             | 0                     |
| Quiet running       | •                               | ••                             | •••                   |
| Wear resistance     | ••                              | ••                             | •••                   |
| Curve steepness     | •                               | •                              | 0                     |
| •••Optimal ••Very   | good • Good                     | d o Limited                    |                       |

#### Pipe gradients for gravity drainage

All sewage drain pipes must be able to empty themselves by gravity. Also, flow noises and deposits can be prevented by laying the pipes appropriately. It must also be ensured that all pipes are laid deep enough to prevent them from freezing (recommended minimum depth in Germany > 80 cm).

| Minimum gradient in accordance with DIN 1986 Part 1 |                |           |                |  |
|-----------------------------------------------------|----------------|-----------|----------------|--|
| DN                                                  | Wastewater     | Rainwater | Combined water |  |
| Pipes ins                                           | ide buildings  |           |                |  |
| ≥ 100                                               | 1:50           | 1:100     | 1:50           |  |
| 150                                                 | 1:66.7         | 1:100     | 1:66.7         |  |
| 200                                                 | 1:100          | 1:100     | 1:100          |  |
| Pipes out                                           | side buildings |           |                |  |
| $\geq$ 100                                          | 1:50           | 1:100     | 1:50           |  |
| 150                                                 | 1:66.7         | 1:100     | 1:66.7         |  |
| 200                                                 | 1:100          | 1:100     | 1:100          |  |

#### **Minimum gradient**

| Range of performance                                                                       | Minimum<br>gradient | Reference to<br>standard<br>and section                        |
|--------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------|
| Non-ventilated<br>connection pipes                                                         | 1.0%                | DIN EN 12056-2,<br>Table 5<br>DIN 1986-100,<br>Section 8.3.2.2 |
| Ventilated<br>connection pipes                                                             | 0.5%                | DIN EN 12056-2,<br>Table 8                                     |
| Ground and collecting pipes<br>a) For wastewater                                           | 0.5%                | DIN 1986-100,<br>Section 8.3.4,<br>Section 8.3.5               |
| b) For rainwater<br>(filling level 0.7)                                                    | 0.5%                | DIN 1986-100,<br>Section 9.3.5.2                               |
| Ground and collecting pipes<br>DN 90 (toilet bowl with<br>flush water volume of 4.5 I-6 I) | 0.5%                | DIN 1986-100,<br>Table A.2                                     |
| Ground pipe for rain-<br>water outside the<br>building (filling level 0.7)                 | 0.5%                | DIN 1986-100,<br>Section 9.3.5.2                               |
| up to DN 200<br>from DN 250                                                                | 0.5%<br>1:DN*       |                                                                |

\* Flow velocity of at least 0.7 m/s up to max. 2.5 m/s.

Behind a sump with open flow-through, it is possible to work toward complete filling without positive pressure.

#### **Minimum nominal diameter**

Refers to the smallest nominal diameter (connection dimension) in an installation or the smallest required pipe dimension.

#### **Reserve impoundment volume**

The reserve impoundment volume indicates the additional protection provided against fluid leaks. It is based on the average daily volume of waste-water generated, and is specified as 25% of that figure. It is equal to the additional volume that must be provided between the cut-in point of the pump system and any fluid leaks. In practice, the inlet-side volume of the pipeline is included in the calculation as a safety factor.

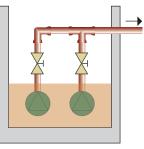
#### NPSH (see also Cavitation)

One important value for a centrifugal pump is the NPSH (Net Positive Suction Head). This specifies the minimum pressure at the pump inlet that is required by this pump type to work without cavitation, meaning the additional pressure required to prevent evaporation of the fluid and to keep it in a fluid state. Pump factors that affect the NPSH are the impeller type and pump speed. Environmental factors that affect it are the fluid temperature, water coverage and atmospheric pressure. There are two different types of NPSH value:

#### 1. NPSH pump = NPSH required

Specifies the intake pressure necessary to prevent cavitation. The water coverage (height difference between pump inlet and the water level in the sump) is also considered inlet pressure.

#### 2. NPSH system = NPSH present


Specifies the pressure present at the pump inlet.

NPSH<sub>system</sub> > NPSH<sub>pump</sub> or NPSH<sub>present</sub> > NPSH<sub>required</sub>

For pumps in wet sump installation, the NPSH<sub>system</sub> is calculated by adding the atmospheric pressure and the fluid coverage of the pump, minus the vaporisation pressure. In dry sump installation, the inlet-side pressure head losses are also subtracted. The NPSH<sub>pump</sub> is specified by the manufacturer with the definition of a cavitation criterion.

#### **Parallel connection**

The objective of parallel operation is to increase the flow rate; the term refers to operation of 2 or more pumps, where all pumps discharge simultaneously into a shared discharge pipeline (with each pump having its own corresponding fittings and its own supply lines). If all pumps are pumping



simultaneously, the flow rates can be added at the same delivery head in order to calculate the total delivery head.

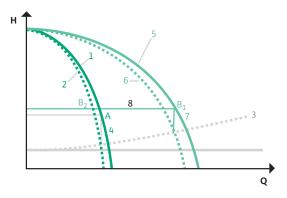
As is true for individual operation, the duty point of the pump curve is obtained from the point of intersection of the pump curve with the system curve. Each pump continues to work at its own pump curve. For pumps of the same type, this means that all pumps the have the same flow rate (also refer to the graphic on page 23). Note, however, that the supply line to the collecting discharge pipeline has its own fittings with corresponding losses. These must be subtracted when calculating the duty point.

#### 2 I

DIN FN

12050-1 EN 12056-4

EN 1671


Basically, these rules also apply to the operation of two pumps of unequal size, where both pumps continue to work at their own curve and divide the flow rate between themselves accordingly (at equal pressure, add the flow rates).

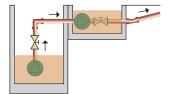
There are various reasons for using multiple pumps:

- Parallel operation with base duty pump and corresponding cut-in of peak-load pumps, where the peak-load pumps are switched on only in case of increased demand that cannot be filled by the base duty pump (such as a higher wastewater inflow than the maximum flow rate of the base duty pump).
- Parallel operation to divide the flow rates in order to lower operating costs or in case of greatly varying conditions.
- Operating one pump with a standby pump or pumps that cut(s) in if the operating unit fails.

A temporary changeover between the pumps should always be provided to ensure that the operating hours are distributed as evenly as possible, thus guaranteeing a longer lifetime of the installation. The multiple-pump switching devices offered by WILO offer this function.

#### Graphic procedure for the calculation:




- 1. Drawing in the curve of pump 1
- 2. Reducing pump curve 1 by the losses (for example, due to fittings or clogs) in the discharge pipeline (up to the collecting pipe)
- 3. Drawing in the system curve
- 4. Vertically projecting the point of intersection of the system curve with the reduced pump curve upwards up to the original pump curve
- A = Duty point of the pump for individual operation
- 5. Drawing in the curve of pump 2 (addition of the flow rate with the same delivery head)
- 6. Reducing pump curve 2 by the losses (for example, due to fittings or clogs) in the discharge pipeline (up to the collecting pipe)

- 7. Vertically projecting the point of intersection of the system curve with the reduced pump curve upwards up to the original pump curve
- B1 = Duty point of the system in parallel operation
- B2= Duty point of pump 1 or 2 considered individually in parallel operation

#### **Series connection**

The objective of series connection is to increase the pressure (delivery head); the term refers to operation of two or more pumps, where all pumps discharge simultaneously into a shared discharge pipeline (with each pump having its own corresponding fittings and its own supply lines).

To calculate the corresponding total curve of the pumps, the pressures are added at the same flow rate.



However, series connection should be approached with

greater scepticism, as various difficulties can arise.

These can range from cavitations to turbine effects, where the first pump drives the second, thus causing potential damage to both pumps. Exacting design and constant monitoring are absolutely necessary.



#### **Effective volume**

Refers to the volume of sewage in a tank (such as a sump) that lies between the cut-in and cut-out point of the system. The cut-in and cut-out points are defined by float switches, level sensors or the like. It specifies the quantity of sewage in a tank that is pumped out during a pumping process.

#### Sump volume

Refers to the residual volume in the sump after the pump has been switched off by the level sensor.

#### Basic electrical concepts and their influences

#### **Starting current**

This refers to the current required during the process of starting up a machine to overcome friction losses and starting torques. Depending on the type of start, the starting current can be up to seven times the nominal current. If the electrical mains are unstable or larger motors are used, appropriate devices must be provided to reduce the starting current. These devices can be soft starters, frequency converters or the like. A reduction of the starting current can already be achieved by selecting a star-delta motor which, in Germany, is specified by the local energy companies for motor power  $P_2 > 4$  kilowatts.

#### ATEX

See "Explosion protection" on page 24

#### Operating modes (in accordance with DIN EN 60034-1)

#### S1 = Continuous duty

The motor temperature increases during operation up to the operating temperature (thermal steady state). During operation, the heat is dissipated by coolant or the surrounding fluid. The machine can be operated in this state without interruption. The installation type (above water/underwater) or installation specified must also be taken into consideration. Continuous duty provides no information about this. S1 does not explicitly mean 24 hours a day, 7 days a week!



Please note the service life specifications and running times per year provided in the relevant documentation.

#### S2 to S9

The motor cannot be operated continuously, as the power loss that is converted to heat in the motor exceeds the amount that could be dissipated by the cooling. The motor would eventually overheat and possibly switch off via the motor protection.

#### S3

This operating mode is a common load for sewage pumps. It specifies a ratio of operating time to down time. Both values must be visible on the type plate and/or in the operating instructions. For S3 mode, the calculation always relates to a time period of 10 minutes.

#### Examples:

| S3 – 20% means:            | Operating time is 20%        |
|----------------------------|------------------------------|
|                            | of 10 min. = 2 min.          |
|                            | Down time is 80%             |
|                            | of 10 min. = 8 min.          |
| S3 – 3 min. means:         | Operating time is 3 min.     |
|                            | Down time is 7 min.          |
| If two values are specifie | ed, this means, for example: |
| S3 – 5 min./20 min.        | Operating time is 5 min      |
|                            | Down time is 15 min          |
| S3 – 25%/20 min.           | Operating time is 5 min.     |
|                            | Down time is 15 min.         |

#### **Bus technology**

Bus technology refers to the intelligent networking of electrical components. Here, the bus line is the data highway on which information is exchanged. A great variety of systems are available on the market today. (Also refer to "LON" on page 26)

#### **Individual run signal**

The individual run signal indicates the operation of the unit (not the operational readiness!).

#### Individual fault signal

Indicates a fault of the individual pump and provides an accurate evaluation method for building management systems.

#### **Explosion protection**

Explosion protection has been modified in the EU. The European Directive 94/9/EC for explosion protection has been in effect since July 1, 2003. The modifications generally lie in the fact that the entire unit (not just the electrical part) must be checked and certified with regard to explosion protection aspects. It is the responsibility of the owner/management to define the zone in which explosion protection must be provided. The units that Wilo certifies as protected from explosion are designed for Zone 1 Group II, Category 2, i.e. for a high standard of safety and where potentially explosive atmospheres are expected to exist.

#### **Explosion protection**

For example, EEx de IIB T4



**EEx General abbreviation** 

#### de Abbreviation for type of protection

- d Pressure-resistant casing
- **Oil** immersion 0
- Overpressure casing р
- Sand-filled apparatus q
- Increased safety е
- Intrinsically safe i
- Abbreviation for the group of the electrical apparatus L
  - Mining industries
  - Surface industries
- В Subdivision of group II A - B - CDifferent dimensions for border gaps, Minimum ignition current
- $T_4$  Abbreviation for the temperature class
  - T1 < 450 <sup>⁰</sup>C
  - T2 < 300 <sup>⁰</sup>C
  - T3 < 200 <sup>o</sup>C
  - T4 < 135 <sup>⁰</sup>C
  - T5 < 100 <sup>⁰</sup>C T6 < 85 <sup>⁰</sup>C

#### **Ex isolating relay**

When used along with Ex isolating relays, float switches can also be used in potentially explosive environments (Zone 1 for fluids containing faecal matter). These relays reduce the flow of current to a level at which, even in case of fault, no igniting spark is generated that would cause the fluid or its environment to ignite.

#### **IP protection classes**

EN 60034-5

The number used to designate the IP classification is composed of two areas. The first digit identifies the protection against contact and against foreign objects, while the second indicates the degree of protection from water. The table that appears here shows reference values. Information that is more detailed is provided in EN 60034-5 and IEC 34-5.

#### Example

According to the information provided in the catalogue, the Wilo-Drain TP 80 E 160/14 has protection class IP 68.

This means that this version is completely protected against contact and dust-tight (6..), and can also be immersed in the fluid for long periods (...8).

| Digit 1 – Protection from<br>foreign objects                                                                          | Digit 2 – Protection from water                                             |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 0 No special protection<br>1 Protection against entry<br>by solid objects > 50 mm                                     | 0 No special protection<br>1 Protection from vertically<br>dripping water   |
| 2 Protection against entry<br>by solid objects > 12 mm                                                                | 2 Protection from vertically<br>dripping water<br>(titled up to 15°)        |
| 3 Protection against entry<br>by solid objects > 2.5 mm                                                               | 3 Sprayed water,<br>(titled up to 60°)                                      |
| 4 Protection against entry<br>by solid objects > 1 mm                                                                 | 4 Splashed water from any angle                                             |
| 5 Protection against dust<br>(allowed in smaller amounts) –<br>dust-protected, complete<br>protection against contact | 5 Jetting water, targeted<br>stream of water from<br>nozzle                 |
| 6 Dust-tight, complete<br>protection against contact                                                                  | 6 Flood water,<br>water jet without large<br>quantities                     |
|                                                                                                                       | 7 Immersed, under<br>certain pressure and time<br>conditions                |
|                                                                                                                       | 8 Continuous immersion,<br>operating condition described<br>by manufacturer |

#### Output

The output of a pump can be divided into electrical output and hydraulic output. The hydraulic output is specified by Q (m<sup>3</sup>/h or l/s) and H (m or bar). The electrical output is, in turn, divided into several parameters.

For example, the power consumption is designated as P1 and specified in kilowatts (kW).

P<sub>2</sub> refers to the shaft power of the motor, i.e. the power that is output by the motor to the hydraulics.

P<sub>3</sub> indicates the hydraulic power output of the pump.

#### Power consuption P1

 $P_1 = \sqrt{3 U} x I x \cos \varphi$ (three-phase current)

#### Shaft power P<sub>2</sub> (rated power)

 $P_2 = M \times 2n \times \pi$ 

Hydraulic power output P<sub>3</sub>

 $P_3 = \rho x g x Q x H$ 

- U = Voltage [V]
- I = Current strength
- [A]
- $\cos \varphi$  = Specification
- of the motor manufacturer M = Nominal torque [Nm]
- n = Nominal speed [rpm]
- $\rho$  = Fluid density [g/dm<sup>3</sup>]
- $g = 9.81 \text{ m/s}_2$
- $Q = Flow rate [m^3/h]$
- H = Delivery head [m]

#### LON (Local Operating Network)

Refers to an automation network (such as for building automation) that distributes responsibilities (intelligences) to decentralised components such as the pump, switching device etc. Through the use of a standardised protocol, all functions can be evaluated at corresponding nodes. The modular structure of the network provides continuous flexibility and expandability. A standardised structure is no longer required, as all system components can transmit their information in all directions. (Also refer to "Bus technology" on page 24)

#### **Motor protection**

## Thermal overcurrent relays (such as PTC thermistors)

These relays are tripped by temperature and interrupt the operation of the unit. They are tripped at certain temperatures (as a result of the temperature increase of the winding) and by increased current consumption. This heating may be caused by blocked hydraulics or by voltage fluctuations.

#### Motor protection switch

Motor protection switches are built into switching devices to protect electrical apparatus. They switch the motor on or off according to its breaking capacity and excessive input voltages. They also serve as protective devices against shortcircuit and phase failure. They are tripped by PTOs (bimetallic switches) and PTCs.

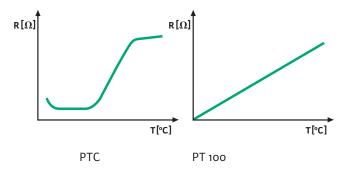
#### Integrated temperature sensors

These temperature sensors are integrated to protect against overheating in the winding of the motor. This guarantees direct temperature monitoring at the winding.

#### • Bimetallic switch

These protective functions are tripped by bimetals depending on temperature. The dimensioning of the metal discs causes the bimetallic disc to change shape, which opens the contact when a predefined temperature is exceeded. It returns to its original shape (and clears the unit for operation again) only after it has cooled substantially. In alternating current devices, this clearance for operation is also possible without a switching device. New protective relays used by Wilo allow this function for three-phase current, even without a switching device. Please note the specifications of the cata-

R[Ω] Tripping temperature


logue documentation.

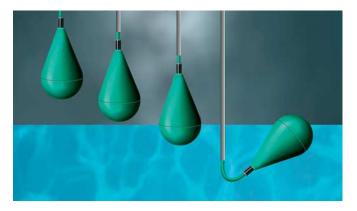
т[∘с]



• Thermistors

For evaluation using PT 100 thermistors, a linear resistance curve that is relative to the temperature development is used as evaluation information. Another type of thermistor is the PTC.




When the PT 100 is used, a continuous and accurate winding temperature in °C or °F can be provided for evaluation.

#### Level measurement systems

## Level control using electrical fluid level signal

Float switch (such as Wilo MS 1) Each float switch is hung at the respective tripping level. A switch is seated in the float switch that interrupts the sent current when the contact is open, thus giving the corresponding information to the switching device. When used along with Ex isolating relays, float switches can also be used in potentially explosive environments (Zone 1 for fluids containing faecal matter). These relays reduce the flow of current to a level at which, even in case of fault, no igniting spark is generated that would cause the fluid or its environment to ignite. The number of float switches depends on the number of pumps and on the type and quantity of the fuses. Each float switch is suspended into the sump from above and can move freely, resting on the surface of the fluid or suspended in the air. If the fluid exceeds a certain level, they tip on their reference axis and thus trigger the function in the switching device. This level switching point is defined by the cable length in the sump.

To prevent "knotting" of multiple float switches when there is strong turbulence in the sump, protective pipes should be pulled over the cable to the fixture.



Float switch (Wilo MS 1)

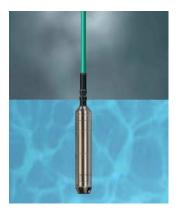
Depending on the number of float switches, a different type of level control (measuring bell or pressure sensor) can be selected for smaller sump diameters.


#### Level control via hydrostatic trip signal

In this type of signal measurement, the fluid level is measured via the ambient pressure of a diaphragm. This ambient pressure is caused by the surrounding fluid. This information can be relayed electrically (analogue) or via a pressure signal (pneumatically). There is no regulation of the fluid level in the sump until settings are configured on the switching gear (unlike float switches).

#### Measuring bell (diving bell)

Because of the greater area of its opening, the measuring bell is suitable for highly contaminated fluids. Cast iron is used as the material for the diving bell so that it remains submersed, even in higher-density fluids, due to its heavier weight. When the measuring bell is covered by the fluid, the trapped atmospheric air is compressed by an amount that corresponds to the level. This change in pressure is evaluated by an electronic level transducer located on or in the switching device and calibrated to the values in the switching device. It offers the particular advantage of continuous level measurement with levels that can be evaluated (in centimetres, metres etc.) and can be used in potentially explosive areas (such as sewage containing faecal matter Zone 1) by relaying a pure pressure signal, without additional safety effort, in the bubble aeration method. It is evaluated in the switching device using the device's integrated sensors.


The bubble aeration method (air compressor) guarantees a uniform quantity of air in the system.



Measuring bell

#### Electronic pressure sensor

Electronic pressure sensors function according to the same principle as diving bells. The primary difference is that the pressure transducer is directly integrated into the pressure sensor, meaning that the pressure signal is converted into an analogue electrical signal (4–20 mA) directly in the sump. Accordingly, the switching device does not require an additional pressure transducer. When the diving bell is used, inaccuracies can be caused by such factors as leakage in the pressure hose or thermal changes with corresponding effects on the quantity of air in the hose. Evaluation using an electronic pressure sensor is more precise. In addition, the material used in pressure sensors is more corrosionresistant (usually AISI 316 or better). The sensor is installed suspended in the sump; when there is strong turbulence in the fluid, it can be installed in a protective pipe. The sensor used by Wilo can be used in potentially explosive environments. However, as is true for all sensors, a Zener barrier must be used to prevent ignition sparks that can cause explosions in the event of failures/defects.



Electronic pressure sensor

For increased safety, an additional Wilo MS 1 float switch could be installed as a high water alarm.

#### **Nominal current**

Denotes the current consumed by the drive at the best efficiency point at a defined voltage.

#### **Floating normally closed contacts**

The floating normally closed contact is an evaluation contact of switching devices. It serves as a signal and control contact for downstream equipment, and requires an external voltage supply. For the contacts, the maximum voltage carrying capacity is to be specified in volts, as well as the maximum current carrying capacity (ampacity) in amperes. For Wilo switching devices used in sewage applications, these values are max. 250 V/1 A. These contacts are strictly outputs; they cannot be used to make adjustments on the switching device. Frequently requested information such as overcurrent, overtemperature, leakage etc. can be output to evaluation systems (such as PCs, signal cards, building management systems etc.) and on relays for separate adjustment of downstream functions.

#### **Collective run signal**

The collective run signal indicates the operational readiness of the system (not the operation!).

#### **Collective fault signal**

Relays a collective signal for multiple single-head pumps/individual plants to an evaluation mechanism or signal station. Signal points can include: acoustic alarm, visual alarm, counter etc. As soon as one component of the system fails, the collective fault signal is triggered as a fault message of the entire system (not the individual pump!).

#### Voltage supply

A constant power supply (mains voltage) guarantees a longer service life of the electrical unit. As the current required by the motor increases at lower voltages, an automatic increase of the temperature of the winding follows. This causes more rapid ageing and earlier failure. The voltage increase is due to the reduced efficiency and decreased inductive resistance. In addition, the motor torque and rpm decrease, with the result that the unit does not fulfil the hydraulic output for which it was designed. Protective motor switches, if present, switch off the unit. In AC pumps, defective capacitors are the result. The following overview lists tendencies for interactions when there are voltage fluctuations:

Voltage increases by 10% of nominal voltage:

- Speed remains unchanged
- Efficiency at full load increases slightly
- Starting current increases up to 10%
- Nominal current at full load decreases by up to 7%
- Winding temperature falls slightly

Voltage decreases by 90% of nominal voltage:

- Speed remains unchanged
- Efficiency decreases slightly at full load
- Starting current decreases up to 10%
- Nominal current at full load increases by up to 10%
- Winding temperature increases

#### Fault signal

These signals can be either individual or collective fault signals. They are recorded and displayed by the switching device and interrupt the function if programmed to do so. Causes that trigger it can be motor defects, levels that are too high or two low, etc. (Also refer to "Individual fault signal" on page 24 and "Collective fault signal" on page 29)

#### **Zener barrier**

The Zener barrier is a passive component for reducing the current and voltage that are fed so that level measurement systems can be used in potentially explosive areas. The Zener diode it contains limits the voltage, while the internal resistor limits the current. In case of a fault, a built-in fuse trips and interrupts the connection. The Zener barrier can be used only in conjunction with a level sensor.



# Installation and calculation examples

General instructions for calculation

#### **General instructions**

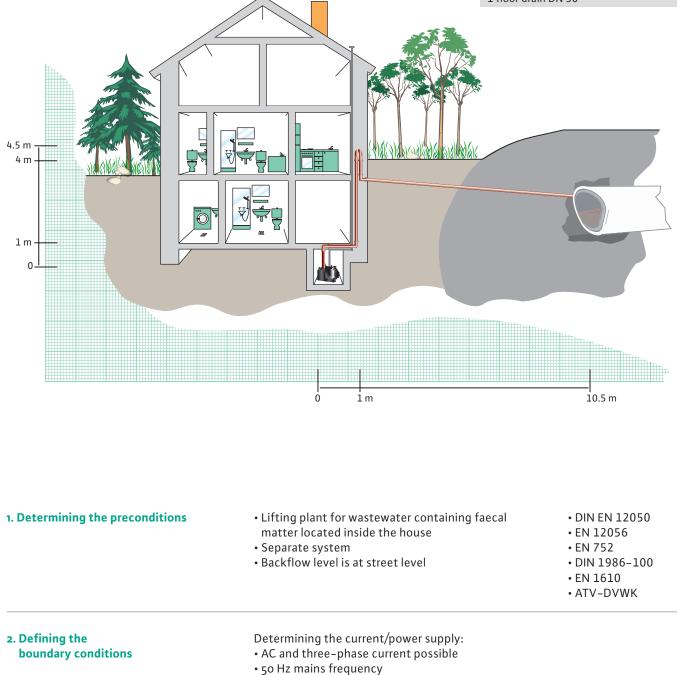
- The flow rate to be supplied by the pump must exceed the flow rate of the sewage inflow. Ensure that the pumps run at their optimal duty point wherever possible in order to guarantee a long service life and optimal output.
- Consider that the output of the pump decreases as its age increases. Abrasion and corrosion can have a negative effect on the flow rates and pressures.
- Design the pump so that it is within a range of +/-15% of its best efficiency point.
- Steep pump curves prevent clogging of the discharge pipeline, as when counterpressure is increased, the pump also increases the pressure along its curve, thus flushing away deposits.
- When selecting accessories, consider the properties of the materials with regard to their ability to resist corrosion and abrasion.
- For high geodetic delivery heads, use quickclosing fittings to reduce water hammer.
- For reasons of economy and safety technology, compensate for peak inflows by using twin-head pump units (pump splitting, standby pump is always to be considered separately).
- If the transfer point (sewer) is below the sump level, vents should be provided, as otherwise the generated suction could completely drain the entire sump, including the pump. This would result in ventilation problems; therefore, appropriate precautions should be taken in advance.
- Note the different operating conditions for pipelines that are laid at varying inclines. The situation with regard to partial or complete filling should be considered! (Also refer to "Delivery head" on page 19/20)

#### **Pipeline and pump materials**

- When designing the system, note that the following influences could mean additional stress for your system:
- Flow velocity of the fluid > Noise, wear
- pH value of the fluid > Material damage, corrosion
- Chemical components of the fluid > Corrosion
- Atmospheric conditions such as humidity, salt content of the air etc. > Corrosion
- External temperature and fluid temperature > Fluid aggressiveness, corrosion
- Retention period of the fluid in the pipeline > Odour build-up
- Because of the changes in materials and the resulting changes in pressure rating, PN 10 pipes should always be used for underground pipelines.

#### INSTALLATION AND CALCULATION EXAMPLES

#### Planning instructions for interior installation


Closed lifting plants inside buildings Fluids containing faecal matter – separate system

#### Characteristics

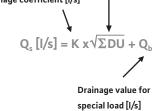
1 guest toilet with hand wash basin and toilet

2 bathrooms (2 toilets, 2 showers, 2 hand wash basins and 1 bathtub), of which 1 bathroom has DN 50 floor drain 1 kitchen including dishwasher

1 laundry room with 1 washing machine (10 kg), 1 hand wash basin and 1 floor drain DN 50



| 3. Calculating        | the | wastewater |  |
|-----------------------|-----|------------|--|
| inflow Q <sub>w</sub> |     |            |  |


Drainage coefficient K for residential buildings: 0.5 l/s

- Also refer to Table 1 of the Annex, "Values for characteristic drainage K" • DIN EN 12050
- EN 12056
- Also refer to Table 2 of the Annex, "Drain connection values (DU) for sanitary fixtures" • DIN EN 12050
- EN 12056

new pipes"

| Drainage sources                     | DU value                 |
|--------------------------------------|--------------------------|
|                                      | (Drain connection value) |
| 2 showers                            | 2 x 0.8 l/s              |
| 1 bathtub                            | 1 x 0.8 l/s              |
| 1 kitchen sink                       | 1 x 0.8 l/s              |
| 1 dishwasher                         | 1 x 0.8 l/s              |
| 1 washing machine (10 kg)            | 1 x 1.5 l/s              |
| 2 floor drains DN 50                 | 2 x 0.8 l/s              |
| 3 toilets with 9 l flushing cisterns | 3 x 2.5 l/s              |
| 4 hand wash basins                   | 4 x 0.5 l/s              |
|                                      | 16.6 l/s                 |





 $Q_s = 0.5 \text{ l/s } x \sqrt{16.6 \text{ l/s}} + 0$ 

#### = 2.04 l/s > 2.5 l/s (9 m<sup>3</sup>/h)

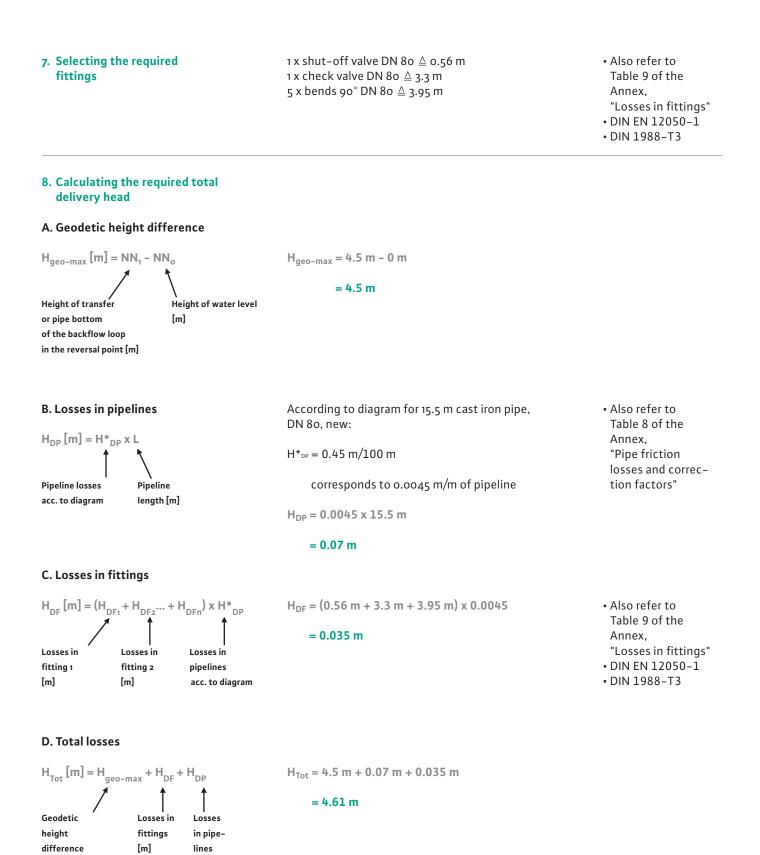
Because the calculated value is less than the drain connection value (DU value) of the largest drainage source, the larger of these two must be used for the rest of the calculation!

| 4. Calculating the rainwater inflow ${\sf Q}_{\sf r}$                   | Not necessary, as system is separate system                                                                                                 |                                                                                     |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 5. Calculating the combined water<br>outflow Q <sub>c</sub>             | Not necessary, as system is separate system                                                                                                 |                                                                                     |
| 6. Piping configuration and<br>determining the minimum<br>flow velocity | Given: 15.5 m pipe<br>Selected: Cast iron (GG) pipe material<br>Nominal diameter DN 80                                                      | • ATV-DVWK A134<br>• EN 12056-4                                                     |
| Required flow rate [m <sup>3</sup> /h]<br>$V_{min}$ [m/s] =             | Verifying the flow velocity<br>$V_{min} = \frac{9 \text{ m}^3/\text{h}}{(2.22 \text{ m}^3)^2} = \frac{9 \text{ m}^3}{(2.22 \text{ m}^3)^2}$ | <ul> <li>Also refer to<br/>Table 7 of the Annex,<br/>"Inner diameters of</li> </ul> |

Pipe inner diameter [m]

4

$$\frac{Q_{ben}[m^3]}{\frac{\pi}{\mu} \times (d_i[m])^2 \times 3600 \text{ s}}$$

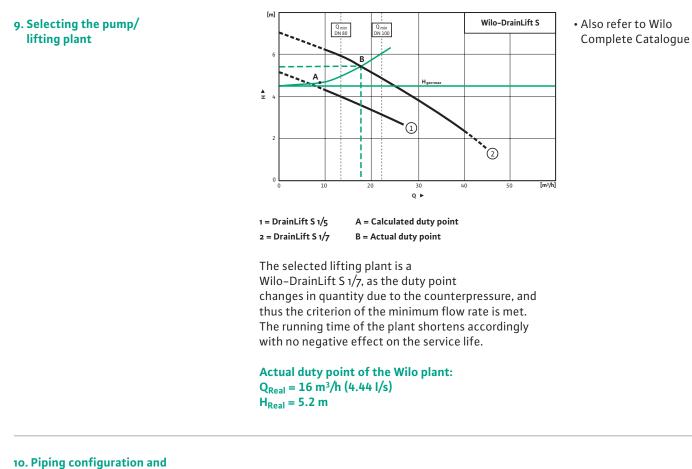

x (d<sub>i</sub>)<sup>2</sup>

$$V_{\min} = \frac{9 \text{ m}^3/\text{h}}{0,785 \text{ s x } (0,08 \text{ m})^2} = \frac{9 \text{ m}^3}{2826 \text{ s x } 0,0064 \text{ m}^2}$$

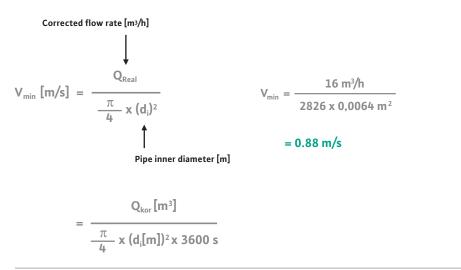
#### = 0.5 m/s

The pipeline diameter is not adequately dimensioned with regard to losses and protection against deposits, as 0.7 m/s < V<sub>min</sub> < 2.5 m/s. Verification with curve of the pump necessary with

regard to actual duty point.




Calculated duty point (minimum value): Q<sub>max</sub> = 9 m<sup>3</sup>/h (2.5 l/s) H<sub>tot</sub> = 4.61 m


[m]

[m]

#### INSTALLATION AND CALCULATION EXAMPLES

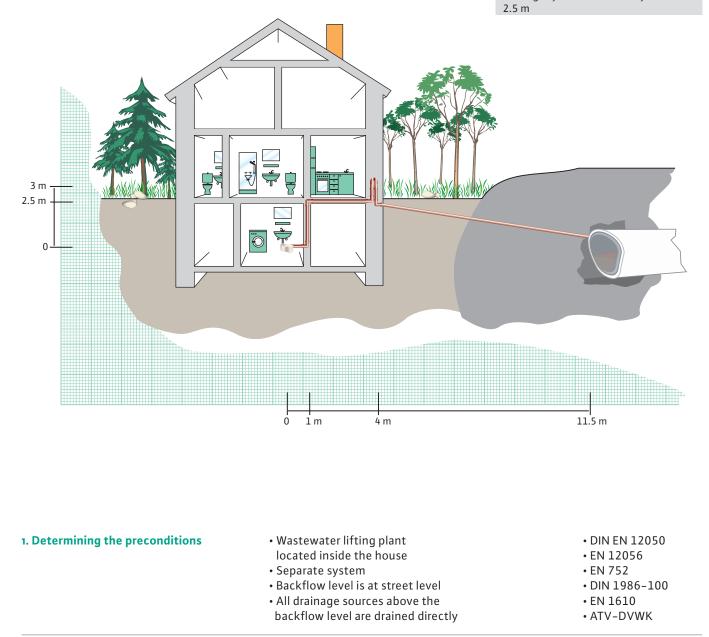


determining the real flow velocity



11. Selecting the control system and accessories

#### **Electrical accessories:**

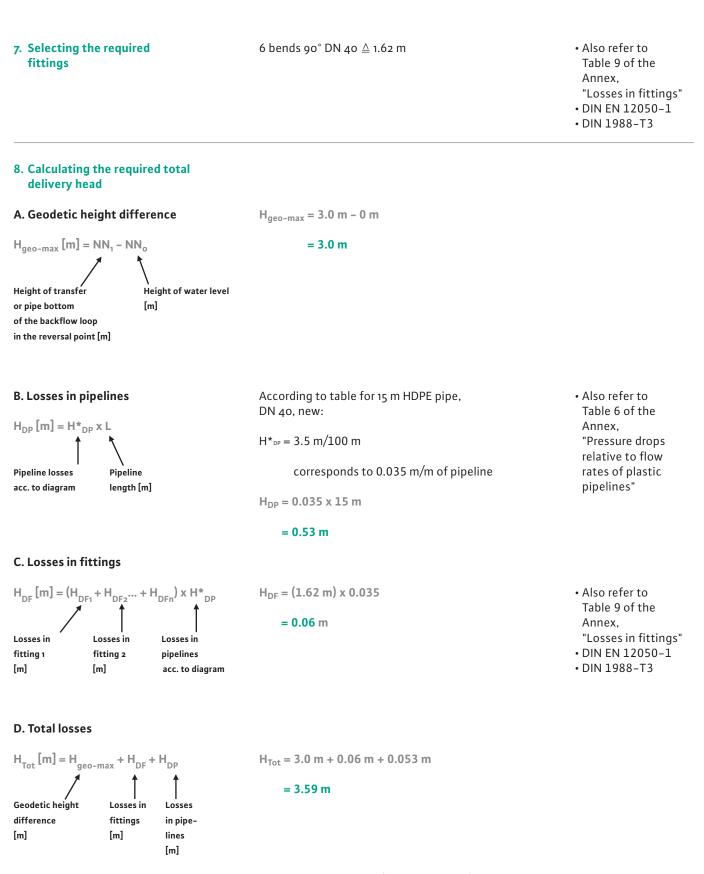

All necessary components are already included in the scope of supply Mechanical accessories: Also refer to Wilo
 Complete Catalogue

- 1 x non-return valve (included in scope of supply beginning in 2005)
- beginning in 2005)
- 1 x gate valve DN 80
- 5 x bends DN 80

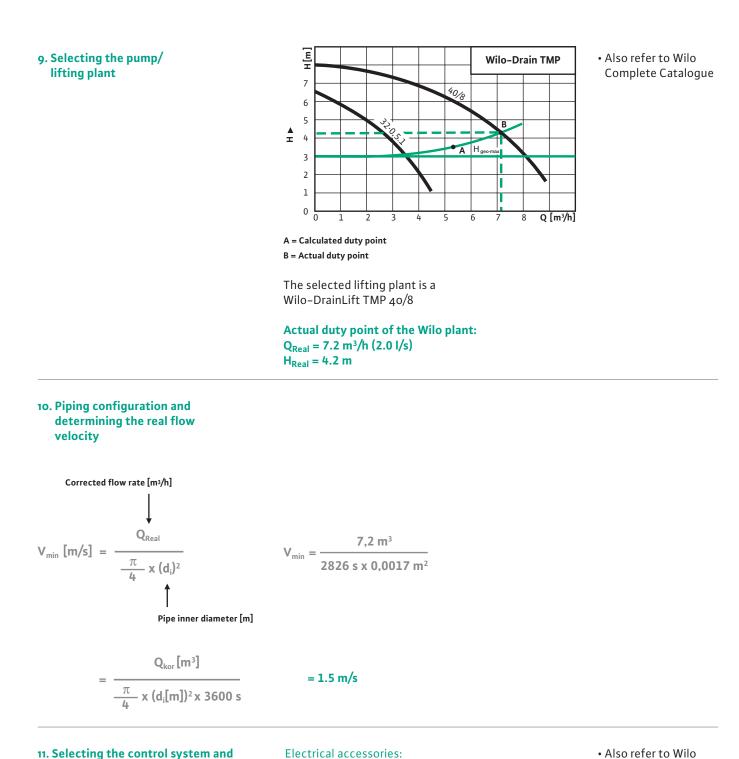
Closed lifting plants inside buildings Fluids free of faecal matter – separate system

#### Characteristics

Laundry room with washing machine (10 kg), 1 hand wash basin All other drainage sources are drained directly Pipeline length to sewer system: 15 m Geodetic height difference between drainage system and sewer system:




| 2. Defining | the          |
|-------------|--------------|
| boundary    | y conditions |


Determining the current/power supply: • AC and three-phase current possible

• 50 Hz mains frequency

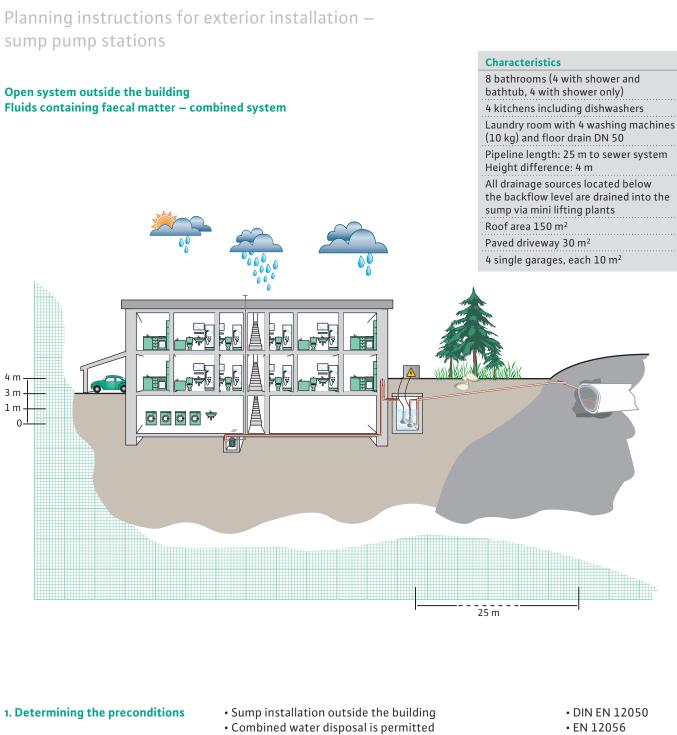
3. Determining the waste-  
water inflow 
$$Q_w$$
Drainage coefficient K for single-family homes:  
 $0.5 \sqrt{s}$ • Also refer to  
ratio 2 of the Annex,  
Values for charac-  
testicid drainage K  
 $1 \times 0.5 \sqrt{s}$ Drainage coursesDU value  
(Drain connection value [0])  
 $1 \times 0.5 \sqrt{s}$ Out and  
 $1 \times 0.5 \sqrt{s}$ • Also refer to  
ratio 2 of the Annex,  
Values for the Annex,  
 $2 \times 0.9$ Drain connection value [0]  
 $1 \times 0.5 \sqrt{s}$  $Q_s = 0.5 1/s \times \sqrt{2.0 1/s} + 0$   
 $= 0.71 1/s = 1.5 1/s (5.4 m/s/h)$ • Also refer to  
ratio 2 of the Annex,  
 $2 \times 0.9$ Drainage coefficient[0]  
 $Q_s = 0.5 1/s \times \sqrt{2.0 1/s} + 0$   
 $Q_s = 0.5 1/s \times \sqrt{2.0 1/s} + 0$   
 $= 0.71 1/s = 1.5 1/s (5.4 m/s/h)$ • Also refer to  
ratio 2 of the Annex,  
 $0 \times 0.0000$ Drainage coefficient[0]  
 $Q_s = 0.5 1/s \times \sqrt{2.0 1/s} + 0$   
 $= 0.71 1/s = 1.5 1/s (5.4 m/s/h)$ • Also refer to  
ratio 2 of the Annex,  
 $0 \times 0.00000$ 4. Calculating the rainwater inflow Q,  
 $V_{min} = \frac{5.4 m^3}{\frac{\pi}{4}} \times (d_1)^2$   
 $V_{min} = \frac{5.4 m^3/h}{0.785 s \times (0.041 m)^2} = \frac{5.4 m^3}{2826 s \times 0.0017 m^2}$ • Also refer to  
ratio 2 of the Annex,  
 $0 \times 0.0017 m^2$ Also refer to  
ratio 2  $\frac{Q_{res}[m^2]}{\frac{\pi}{4}} \times (d_1(m)^2)^2 \times 3600 s$ Verifying the flow velocity  
 $V_{min} = \frac{5.4 m^3}{0.785 s \times (0.041 m)^2} = \frac{5.4 m^3}{2826 s \times 0.0017 m^2}$ • Also refer to  
ratio 7 the Annex,  
ratio 7 the An



Calculated duty point (minimum value): Q<sub>max</sub> = 5.4 m<sup>3</sup>/h (1.5 l/s) H<sub>tot</sub> = 3.59 m



#### 11. Selecting the control system and accessories


#### **Electrical accessories:**

All necessary components are already included in scope of supply • Mini alarm switchgear or

- Wilo-Alarm Control 1 optional
- Mechanical accessories:

• 6 x 90° bends

Complete Catalogue

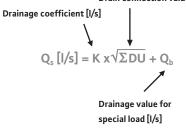


- Backflow level is at street level
- Twin-head pump station, as house is multi-family home
- Effects of wind are to be disregarded
- Rain vertical to roof area (150 m<sup>2</sup>)
- 2. Defining the boundary conditions
- Determining the current/voltage supply:
- AC and three-phase current possible
  - 50 Hz mains frequency

• EN 752

• EN 1610

• ATV-DVWK


• DIN 1986-100

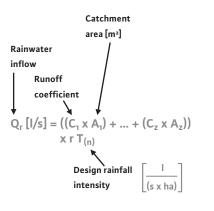
#### 3. Calculating the wastewater inflow Q<sub>w</sub>

Drainage coefficient K for multi-family homes: 0.5 l/s

| Drainage sources                    | DU value                 |
|-------------------------------------|--------------------------|
|                                     | (Drain connection value) |
| 8 showers                           | 8 x 0.8 l/s              |
| 4 bathtubs                          | 4 x 0.8 l/s              |
| 4 kitchen sinks                     | 4 x 0.8 l/s              |
| 4 dishwasher                        | 4 x 0.8 l/s              |
| 4 washing machines (10 kg)          | 4 x 1.5 l/s              |
| 1 floor drain DN 50                 | 1 x 0.8 l/s              |
| 8 toilets with 6 l flushing cistern | s 8 x 2.0 l/s            |
| 9 hand wash basins                  | 9 x 0.5 l/s              |
|                                     | 43.3 l/s                 |

Drain connection value [l/s]




 $Q_s = 0.5 \text{ I/s } x \sqrt{43.3 \text{ I/s}} + 0$ 

#### = 3.29 l/s (11.84 m<sup>3</sup>/h)

If the calculated value were less than the drain connection value (DU value) of the largest drainage source, the larger of these two would have to be used for the rest of the calculation!

#### 4. Calculating the rainwater inflow Q<sub>r</sub>

If no value is provided by local building authorities, a value of 300 l/(s x ha) can be assumed when flooding must be avoided under all circumstances.



1 ha 🛓 10,000 m²

| Sealed area                                                                                    | Coefficient C |
|------------------------------------------------------------------------------------------------|---------------|
| Roof area 150 m <sup>2</sup>                                                                   | 1.0           |
| Driveway, concrete pavement 30 m <sup>2</sup>                                                  | 0.7           |
| Single garages, each 10 m <sup>2</sup>                                                         | 1.0           |
| Q <sub>r</sub> = ((1 x 150 m <sup>2</sup> ) + (0.7 x 30 m <sup>2</sup> ) + (                   | 1 x 40 m²)) x |
| Q <sub>r</sub> = ((1 x 150 m <sup>2</sup> ) + (0.7 x 30 m <sup>2</sup> ) + (<br>300 l/(s x ha) | 1 x 40 m²)) x |
|                                                                                                | 1 x 40 m²)) x |

"Drain connection values (DU) for sanitary fixtures" • DIN EN 12050 • EN 12056

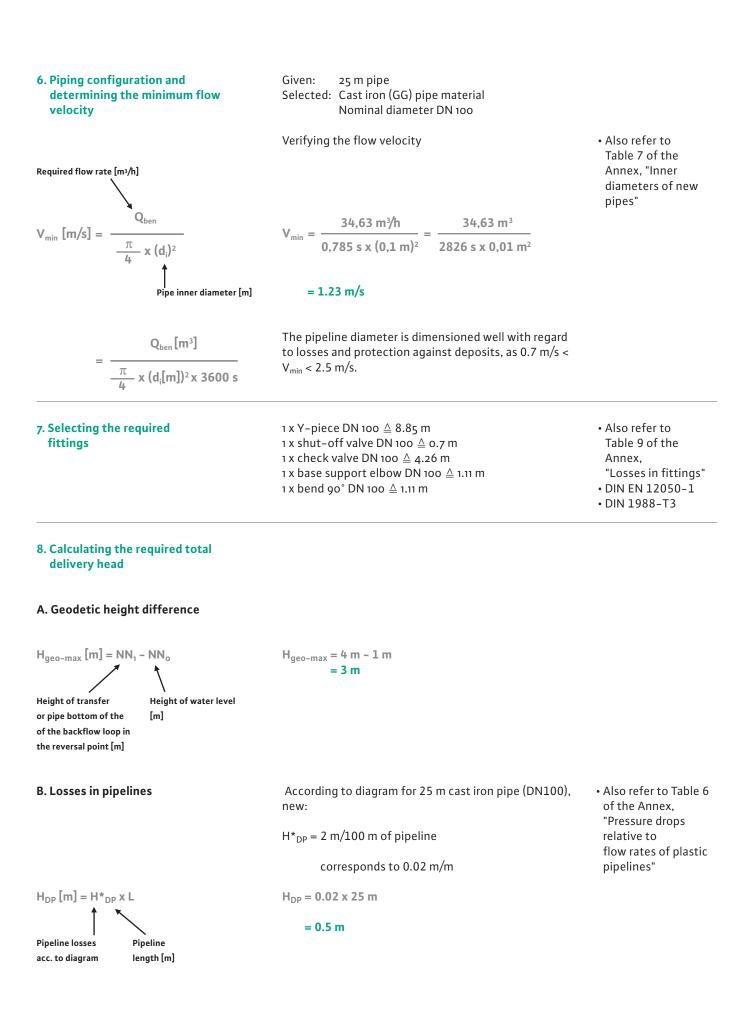
Table 2 of the Annex.

Also refer to

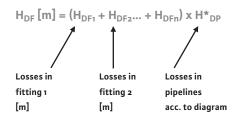
Also refer to

Table 1 of the Annex,

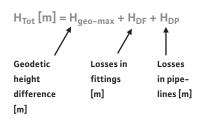
"Values for characteristic drainage K" • DIN EN 12050 • EN 12056


- Also refer to Table 4 of the Annex, "Rainfall intensities in Germany"
- Also refer to Table 5 of the Annex, "Runoff coefficients C for calculating the rainfall rate Q<sub>r</sub>"
   DIN 1986 – 100
   EN 12056 – A
- EN 12056-
- 3:2001-01
- DIN EN 752-
- 2\_1996-09

5. Calculating the combined water outflow Qc


 $Q_{c}[l/s] = Q_{w}[l/s] + Q_{r}[l/s]$ 

Q<sub>c</sub> = 3.29 l/s + 6.33 l/s


= 6.33 l/s



#### C. Losses in fittings



**D. Total losses** 



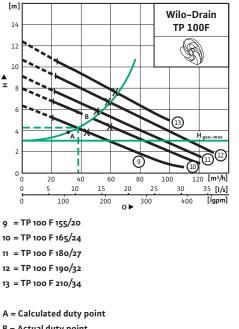
 $H_{DF} = (8.95 \text{ m} + 4.26 \text{ m} + 0.7 \text{ m} + 1.1 \text{ m} + 1.1 \text{ m}) \times 0.02$ 

= 0.32 m

- Also refer to Table 9 of the Annex, "Losses in fittings" • DIN EN 12050-1
- DIN 1988-T3

 $H_{Tot} = 3 m + 0.5 m + 0.32 m$ 

= 3.82 m


Calculated duty point (minimum value): Q<sub>max</sub> = 34.63 m<sup>3</sup>/h (9.62 l/s) H<sub>Tot</sub> = 3.82 m

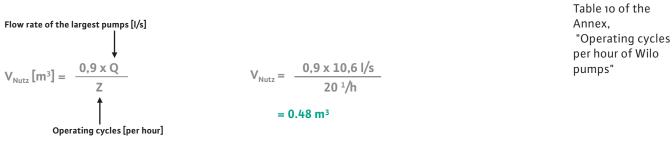
#### 9. Designing the pump/system

- Select an impeller that corresponds to your own priorities.
- Reliable and problem-free: Vortex
- Cost-effective in operation: single or multi-vane
- Here: Vortex is recommended, due to combination of widely varied fluid components
- Also refer to the chapter on "Basic hydraulic concepts and pipelines-Impeller types"

Also refer to Wilo

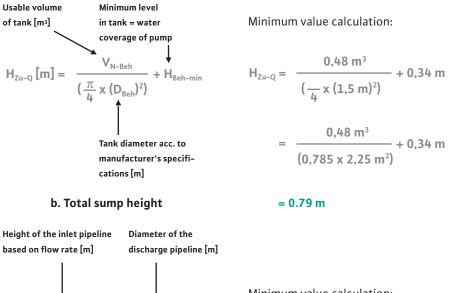
Complete Catalogue

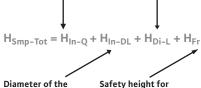



B = Actual duty point

The selected pump is a Wilo-Drain TP 100 F 155/20 (at 3~400 V: 6.1 A).

Actual duty point of the Wilo pump: Q<sub>Real</sub> = 38 m<sup>3</sup>/h (10.6 l/s)  $H_{Tot} = 4.2 m$ 


#### 10. Configuring the sump


#### A. Usable volume



#### B. Sump height (inside)

#### a. Inlet height depending on the flow rate





inlet pipeline [m]

Safety height for frost-proof installation [m] Minimum value calculation:

H<sub>Smp-Tot</sub> = 0.79 m + 0.15 m + 0.1 m + 1 m

= 2.04 m

Also refer to

 Also refer to Wilo **Complete Catalogue** 

#### 11. Calculating the switching points

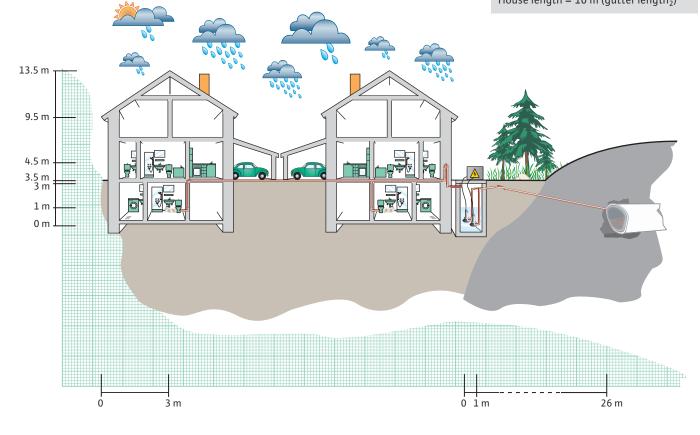
## Usable volume of tank [m] $H_{Signal} [m] = \frac{V_{N-Beh}}{\frac{\pi}{4} \times (D_{Beh})^2}$ Inner diameter of the sump acc. to manufacturer's specifications [m] $H_{Signal} = \frac{0,48 \text{ m}^3}{(\frac{\pi}{4} \times (1.5 \text{ m})^2)}$ $H_{Signal} = \frac{0,48 \text{ m}^3}{(0,785 \times 2,25 \text{ m}^2)}$ = 0.27 m• Minimum cut-in point: 0.61 m • Cut-out point: 0.34 m

### 12. Selecting the control system and accessories

#### **Electrical accessories:**

# Wilo-DrainControl PL 2 (control system) Wilo level sensor 4-20 mA (level measurement) Mechanical accessories for stationary wet sump installation:

- 2 x base support elbows including guide,
- 2 x check valves
- 1 x gate valve
- $\bullet$  1 x pipe bend 90°
- 1 x Y-piece
- 2 x chains, 5 m


Wilo-Drain WB is supplied already complete from the factory

- Also refer to Wilo Complete Catalogue
- Also refer to the chapter
   "Additional planning guide–
   Selecting switching devices for submersible pumps"

Gravity drainage Fluids containing faecal matter – combined system

#### Characteristics

1 bathroom with shower and bathtub 1 bathroom with shower 1 guest toilet 1 laundry room with 1 washing machine (10 kg), 1 floor drain, 1 hand wash basin 1 kitchen including dishwasher and hand sink Paved driveways, total area 40 m<sup>2</sup> Single garage with 10 m<sup>2</sup> floor space House length = 10 m (gutter length<sub>2</sub>)



#### 1. Determining the preconditions

- Combined water disposal is permitted
- Both houses have the same floor space
- Location: Dortmund, Germany
- Twin-head pump station
- Note effects of wind for rainwater
- Rain vertical to roof area
- Quantity of rainwater to be drained is identical for each house, as there is also no wind shadow
- All drainage sources are drained into the sump
- Mini lifting plants guarantee drainage of the objects in the basement into the sump

- DIN EN 12050
- EN 12056 • EN 752
- DIN 1986-100
- EN 1610
- ATV-DVWK

2. Defining the boundary conditions

Determining the current/power supply:

- AC and three-phase current possible
- 50 Hz mains frequency

Also refer to

Also refer to

Table 2 of the

Annex, "Drain

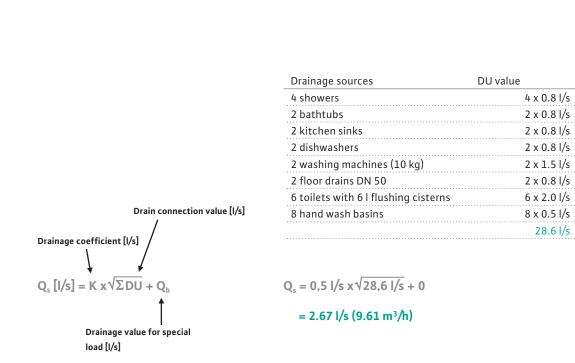
fixtures" • DIN EN 12050

• EN 12056

connection values

(DU) for sanitary

Also refer to the


chapter on "Basic concepts-

roof area" • EN 12056-3

Table 1 of the Annex,

"Values for characteristic drainage K" • DIN EN 12050 • EN 12056

Drainage coefficient K for residential buildings: 0.5 l/s



4. Calculating the rainwater inflow Q<sub>r</sub>

#### A. Calculating the roof area

3. Calculating the wastewater

inflow Q<sub>w</sub>

| Roof area                      | Horizontal roof depth [m]                                  |
|--------------------------------|------------------------------------------------------------|
| Ļ                              | Ļ                                                          |
| $A_{\text{Roof}}[m^2] = L_G$   | <sub>2</sub> (D <sub>hor</sub> + 0.5 x D <sub>vert</sub> ) |
| 1                              | 1                                                          |
| Gutter length <sub>2</sub> [m] | Vertical roof depth [m]                                    |

#### B. Calculating the wall area

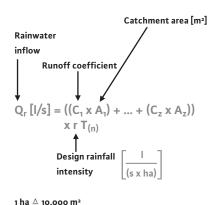
| Wall area          | Gutter length₂ [m]                           |                                 |
|--------------------|----------------------------------------------|---------------------------------|
| $A_{Wall} [m^2] =$ | 0.5 x (L <sub>G2</sub> x H <sub>Wall</sub> ) | $A_{Wall} = 0.5 x (10 m x 6 m)$ |
|                    | T<br>Wall area [m]                           | <b>= 30 m</b> <sup>2</sup>      |

C. Calculating the total catchment area per roof

 $\begin{array}{c} \text{Roof area } [m^2] \\ \text{A}_{\text{Total}} \left[ m^2 \right] = \text{A}_{\text{Roof}} + \text{A}_{\text{Wall}} \end{array}$ 

For each house:

 $A_{Total} = 100 \text{ m}^2 + 30 \text{ m}^2 = 130 \text{ m}^2$ 


 $A_{Roof} = 10 \text{ m} (3 \text{ m} + 0.5 \text{ x} 4 \text{ m})$ 

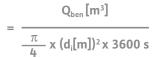
 $= 50 \text{ m}^2 \text{ per roof section}$ 

= 100 m<sup>2</sup> roof area per house

Total quantity **130 m<sup>2</sup> x 2 = 260 m<sup>2</sup>** 

#### D. Calculating the rainwater inflow




5. Calculating the combined water outflow Q<sub>c</sub>

 $Q_{c}[l/s] = Q_{w}[l/s] + Q_{r}[l/s]$ 

#### 6. Piping configuration and determining the minimum flow velocity

Required flow rate [m3/h]

 $V_{\min} [m/s] = \frac{Q_{ben}}{\frac{\pi}{4} x (d_i)^2}$ 



### 7. Selecting the required fittings

Location: Dortmund, Germany

| Sealed area                                   | Coefficient C |
|-----------------------------------------------|---------------|
| Roof area 260 m <sup>2</sup>                  | 1.0           |
| Driveway, concrete pavement 40 m <sup>2</sup> | 0.7           |
| 2 garages, each 10 m <sup>2</sup>             | 1.0           |

 $Q_r = ((1 \times 260 \text{ m}^2) + (0.6 \times 40 \text{ m}^2) + (1 \times 20 \text{ m}^2)) \times$ 

277 l/(s x ha) 10.000 m<sup>2</sup>

= 8.42 l/s

Q<sub>c</sub> = 2.67 l/s + 8.42 l/s

= 11.09 l/s (39.92 m<sup>3</sup>/h)

Given: 29 m pipe Selected: HDPE pipe material Nominal diameter DN 80

Verifying the flow velocity

 $V_{min} = \frac{39,9 \text{ m}^3/h}{0,785 \text{ s x } (0,08 \text{ m})^2} = \frac{39,9 \text{ m}^3}{2826 \text{ s x } 0,0064 \text{ m}^2}$ 

#### = 2.21 m/s

The pipeline diameter is dimensioned sufficiently with regard to losses and protection against deposits, as 0.7 m/s <  $V_{min}$  < 2.5 m/s. This is also adequate to carry heavier particles of the drainage water.

1 x Y-piece DN 80  $\triangleq$  6.58 m 2 x shut-off valves DN 80  $\triangleq$  1.12 m 2 x check valves DN 80  $\triangleq$  6.6 m 2 x base support elbows DN 80  $\triangleq$  1.58 m 1 x bend 45° DN 80  $\triangleq$  0.79 m Also refer to Table 9 of the Annex, "Losses in fittings"
DIN EN 12050-1

• DIN 1988-T3

 Also refer to Table 4 of the Annex, "Rainfall intensities in Germany"

• Also refer to "Determining the preconditions"

• DIN 1986-100

Also refer to

new pipes"

Annex,

Table 7 of the

"Inner diameters of

• ATV-DVWK A 118

### 8. Calculating the required total delivery head

#### A. Geodetic height difference

Height of transfer or pipe bottom of backflow loop in reversal point [m]

l Height of water level [m]

#### B. Losses in pipelines

H<sub>DP</sub> [m] = H\*<sub>DP</sub> x L Pipeline losses Pipeline acc. to diagram length [m]

#### C. Losses in fittings

#### D. Total losses

H<sub>Tot</sub> [m] = H<sub>geo-max</sub> + H<sub>DF</sub> + H<sub>DP</sub> H<sub>Tot</sub> = 2 Geodetic height Losses in Losses difference [m] fittings in pipe-[m] lines [m] Calcula

 $H_{geo-max} = 3 m - 1m$ 

= 2 m

According to diagram for 29 m cast iron pipe, new:

H\*<sub>DP</sub> = 7.5 m/100 m pipeline

corresponds to 0.075 m/m

H<sub>DP</sub> = 0.075 x 29 m

= 2.18 m

H<sub>DF</sub> = (6.58 m + 1.12 m + 6.6 m + 1.58 m + 0.79 m) x 0.02

= 0.33 m

- Also refer to Table 8 of the Annex, "Pipe friction losses and correction factors"
- Also refer to Table 9 of the Annex, "Losses in fittings"
- DIN EN 12050-1
- DIN 1988-T3



= 4.51 m

Calculated duty point (minimum value):  $Q_{max} = 39.92 \text{ m}^3/\text{h} (11.09 \text{ l/s})$  $H_{Tot} 4.5 \text{ m}$ 

#### 9. Selecting the pump

- Select an impeller that corresponds to your own priorities.
- Reliable and problem-free: Vortex
- Cost-effective in operation: single or multi-vane

[m] Wilo-Drain TP 65 E 20 16 ▲ エ 12 8 H geo-max o [m3/h] 8 16 24 32 40 48 56 [l/s] 10 o 0 ► 1 = TP 65 E 114/11 2 = TP 65 E 122/15 3 = TP 65 E 132/22 A = Calculated duty point B = Actual duty point

 Also refer to the chapter on "Basic hydraulic concepts and pipelines – Impeller types – Advantages of use"

• Also refer to Wilo Complete Catalogue

The selected pump is a Wilo-Drain TP 65 E 114/11 (at 3~400 V: 3.2 A).

Actual duty point of the Wilo pump:  $Q_{Real} = 48 \text{ m}^3/\text{h} (13.3 \text{ l/s})$  $H_{Real} = 4.6 \text{ m}$ 

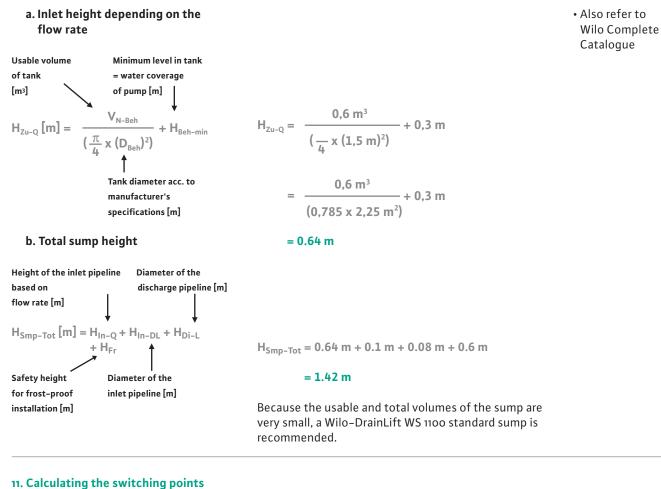
#### 10. Configuring the sump

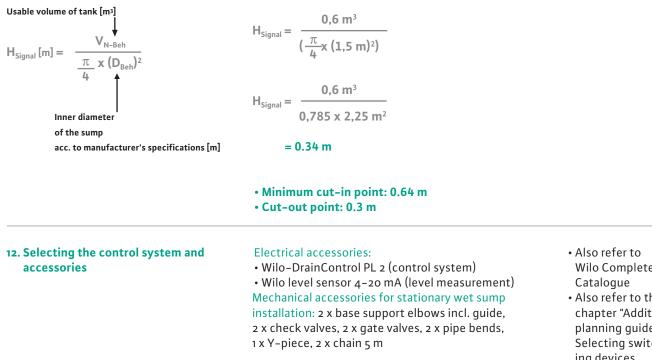
#### A. Usable volume

Flow rate of the largest pumps [l/s]

$$V_{\text{Nutz}}[m^3] = \frac{0.9 \times Q}{Z}$$

Operating cycles [per hour]


$$V_{\rm Nutz} = \frac{0.9 \times 13.3 \, \text{l/s}}{20 \, \text{l/h}}$$


١

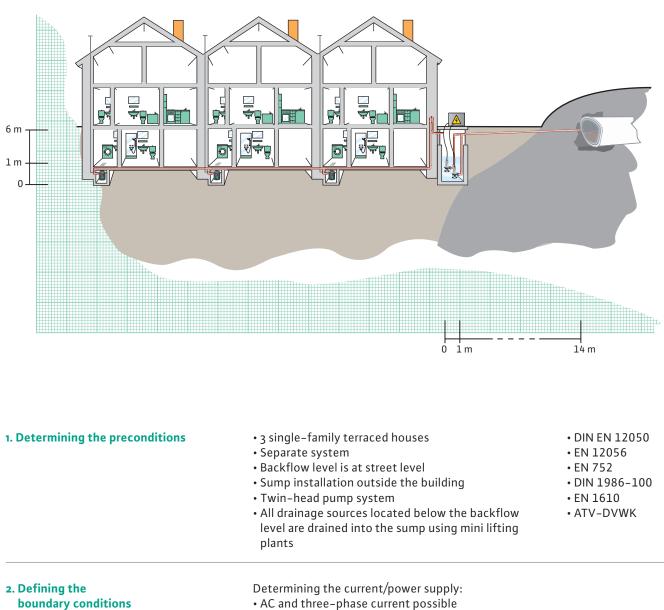
= **0.6** m<sup>3</sup>

#### • ATV-DVWK A 134

• Also refer to Table 10 of the Annex, "Operating cycles per hour of Wilo pumps" B. Sump height (inside)

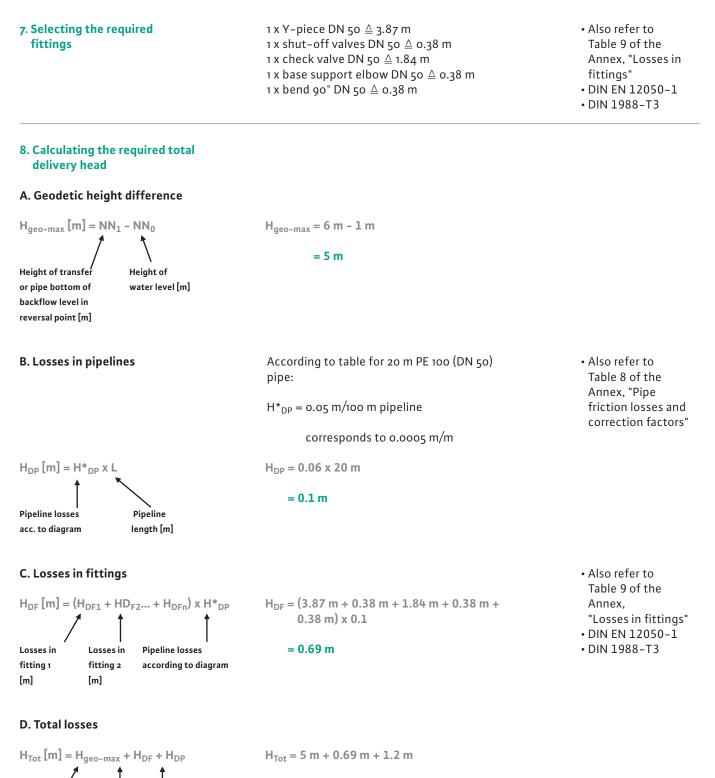





Wilo-Drain WS is supplied from the factory with all pipework installed (no additional fittings required in the sump).

- Wilo Complete
- Also refer to the chapter "Additional planning guide-Selecting switching devices for submersible pumps"

Exterior installation outside the building Fluids containing faecal matter – separate system


#### Characteristics

6 bathrooms (3 with shower and 3 with bathtub) 3 kitchens including dishwashers 3 laundry rooms with 3 washing machines (10 kg) and 3 floor drains DN 50



• 50 Hz mains frequency

3. Calculating the wastewater  
inflow Q<sub>w</sub>Drainage coefficient K for single-family homes: 
$$a, b, k$$
  
annex, Yaliuss  
for characteristic  
drainage K\*  
 $a, b, k$   
 $a, k$   
 $a, b, k$   
 $a, k$ 



= 6.9 m

Calculated duty point (minimum value): Q<sub>max</sub> = 11.24 m<sup>3</sup>/h (3.12 l/s) H<sub>Tot</sub> = 6.9 m

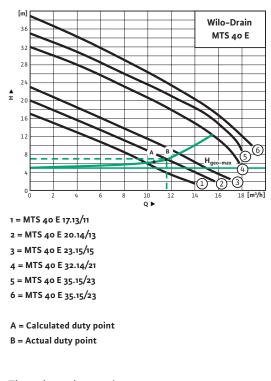
Geodetic height

difference [m]

Losses in

fittings

[m]


Losses

in pipe-

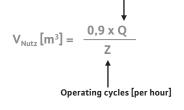
lines [m]

9. Selecting the pump/lifting plant

- Select an impeller that corresponds to your own priorities.
- Reliable and problem-free: Vortex
- Cost-effective in operation: single or multi-vane
- Alternative: pump with macerator
- Here: pump with macerator recommended



- Also refer to the chapter on "Basic hydraulic concepts and pipelines— Impeller types"
- Also refer to Wilo Complete Catalogue


The selected pump is a Wilo-Drain MTS 40 E 20.14/13 (at 3~400 V: 2.8 A).

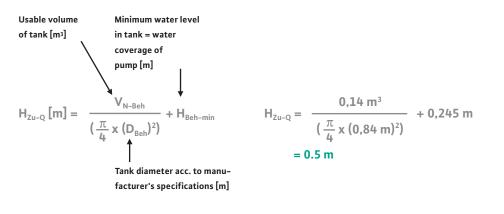
Actual duty point of the Wilo pump:  $Q_{Real} = 11.4 \text{ m}^3/\text{h} (3.2 \text{ l/s})$  $H_{Real} = 7.8 \text{ m}$ 

#### 10. Configuring the sump

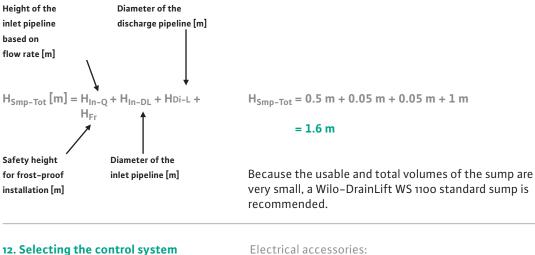
#### A. Usable volume

Flow rate of the largest pumps [l/s]




$$V_{\text{Nutz}} = \frac{0.9 \text{ x } 3.2 \text{ l/s}}{20^{1}/\text{h}}$$

= 0.14 m<sup>3</sup>


- ATV-DVWK A 134
- Also refer to Table 10 of the Annex, "Operating cycles per hour of Wilo pumps"

#### B. Sump height (inside)

a. Inlet height depending on the flow rate

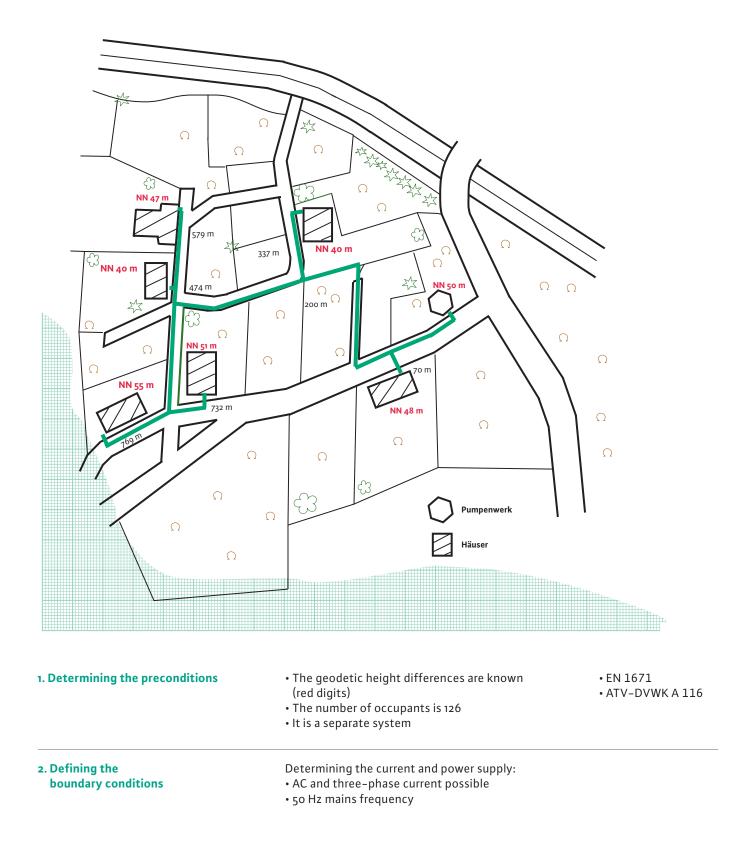


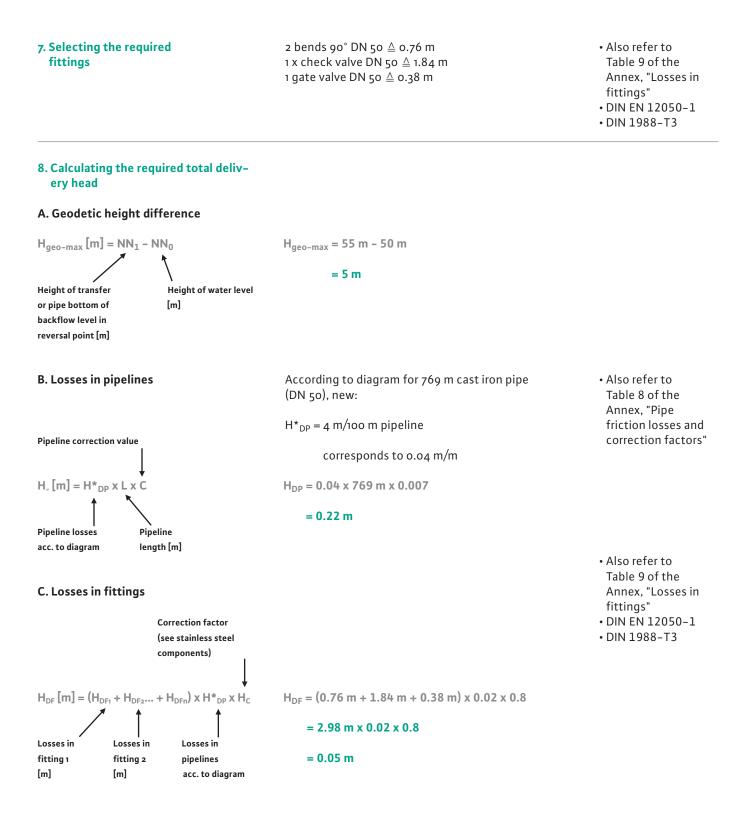
#### b. Total sump height



### and accessories

• Wilo-DrainControl PL 2 (control system) • Wilo level sensor 4-20 mA (level measurement) Mechanical accessories for stationary wet sump installation:


- 2 x base support elbows incl. guide
- 2 x check valves
- 1 x gate valve
- 1 x pipe bend 90°
- 1 x Y-piece
- 2 x chains, 5 m


Wilo-Drain WS is supplied from the factory with all pipework installed (no additional fittings required in the sump).

 Also refer to Wilo Complete Catalogue

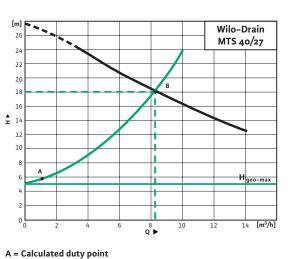
- Also refer to Wilo Complete Catalogue Also refer to the chapter "Additional
- planning guide-Selecting switching devices for submersible pumps"

#### For exterior installation – pressure drainage Fluids containing faecal matter – separate system – rough calculation





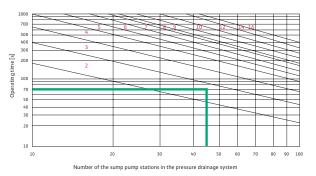
#### **D. Total losses**


#### $H_{Tot}[m] = H_{geo-max} + H_{DF} + H_{DP}$ Geodetic height Losses in Losses difference [m] fittings in pipe-[m] lines [m]

H<sub>Tot</sub> = 5 m + 0.05 m + 0.22 m

= 5.27 m

Calculated duty point (minimum value):  $Q_{max} = 1.5 \text{ m}3/\text{h}(0.42 \text{ l/s})$  $H_{Tot} = 5.27 \text{ m}$ 






 Also refer to the chapter on "Basic hydraulic concepts-Impeller types"

B = Actual duty point

Parallel operation of pumps is to be excluded in this system.

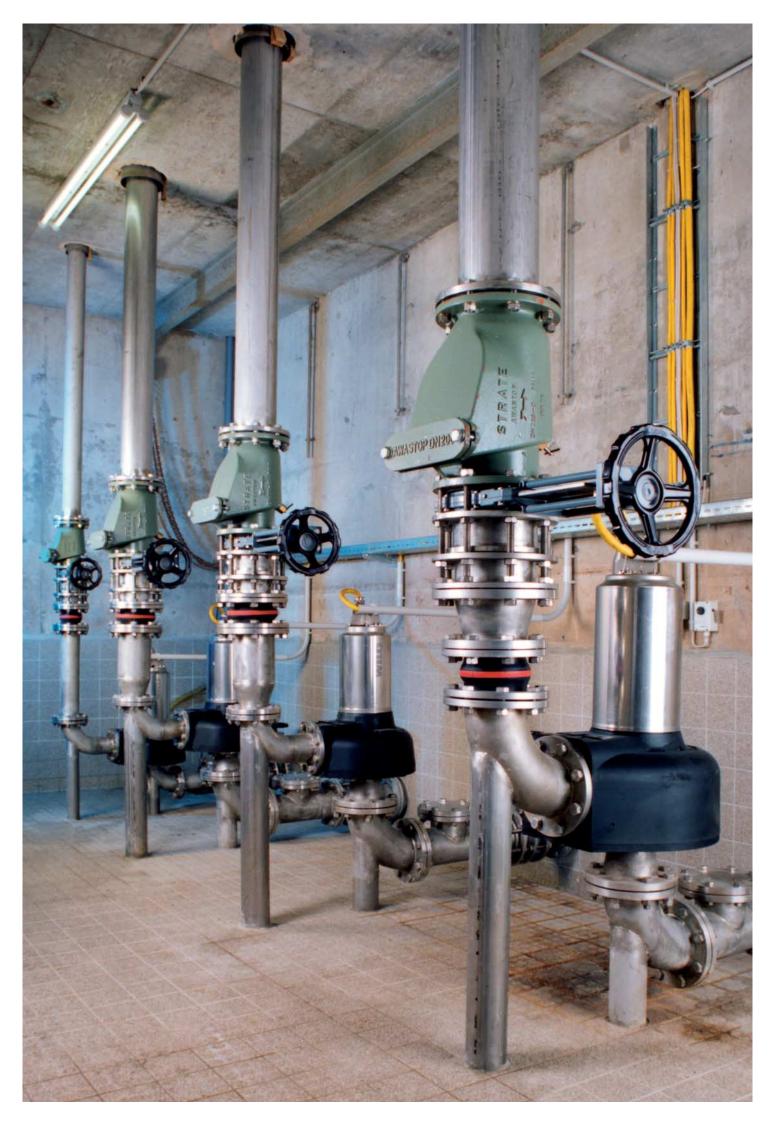


 Also refer to Table 11 of the Annex, "Sump pump stations in parallel operation"

Should parallel operation of pumps occur, refer to the chapter on "Basic hydraulic concepts-Parallel connection"

The selected pump is a Wilo-Drain MTS 40/27 F (at 3~400 V: 3.0 A).

#### Actual duty point of the Wilo pump: $Q_{Real} = 8.1 \text{ m}^{3}/\text{h} (2.25 \text{ l/s})$ H<sub>Real</sub> = 18.2 m


Due to changed pump capacity with regard to the required duty point, only the required operating time of the pump is reduced, which has a positive effect on the lifetime of the pump.

#### 10. Piping configuration and determining the real flow velocity

Corrected flow rate [m<sup>3</sup>/h]

| $V_{\min} [m/s] = \frac{Q_{\text{Real}}}{\frac{\pi}{4} \times (d_i)^2}$ Pipe inner diameter [m] $= \frac{Q_{\text{kor}}[m^3]}{\frac{\pi}{4} \times (d_i[m])^2 \times 3600 \text{ s}}$ | $V_{\min} [m/s] = \frac{8,1 \text{ m}^3/\text{h}}{0,785 \text{ s x } 0,0017 \text{ m}^2}$ $= \frac{8,1 \text{ m}^3}{2826 \text{ s x } 0,0017 \text{ m}^2}$ $= 1.69 \text{ m/s}$                                                                                                                                                                                                                                                                                  |                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| − <u>π</u> x (d <sub>i</sub> [m])² x 3600 s                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                   |
| 11. Selecting the sump                                                                                                                                                                | Selected: Usable volume 120 l                                                                                                                                                                                                                                                                                                                                                                                                                                    | • Wilo note:<br>experience value                                  |
|                                                                                                                                                                                       | Given: Wilo-Drain MTS 40/27<br>Q = 8.1 m³/h<br>H = 15.9 m<br>Daily quantity 120 l/pers                                                                                                                                                                                                                                                                                                                                                                           |                                                                   |
| Usable volume [I]                                                                                                                                                                     | Reserve impoundment volume: 25% of daily quantit                                                                                                                                                                                                                                                                                                                                                                                                                 | у                                                                 |
| $Q_{Res}[I] = Q_{usbl} x Pers. x Q_{day}$                                                                                                                                             | Q <sub>Res</sub> = 120   x 21 x 25%                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                   |
| $\checkmark$                                                                                                                                                                          | = 630 l                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |
| Number of Daily quantity<br>persons in the [%]<br>household                                                                                                                           | Selected Wilo sump: Wilo-Drain WS 1100                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Also refer to<br/>Wilo Complete<br/>Catalogue</li> </ul> |
| 12. Selecting the control system<br>and accessories                                                                                                                                   | Electrical accessories:<br>Three-phase current recommended due to better<br>starting behaviour<br>• Wilo-DrainControl PL 1 (control system)<br>• Wilo level sensor 4-20 mA<br>(level measurement)<br>Mechanical accessories for stationary wet sump<br>installation:<br>• 1 x base support elbow<br>• 1 x check valve<br>• 1 x gate valve<br>• 2 x pipe bends, possibly flush connection<br>• 1 x chain, 5 m<br>Pipework already installed in Wilo-Drain WS 1100 | • Also refer to<br>Wilo Complete<br>Catalogue                     |

Pipework already installed in Wilo-Drain WS 1100 when supplied from the factory (no additional fittings required in the sump).



#### **Discharge pipeline ventilation**

Long holding times of sewage in discharge pipelines frequently result in unwanted odours caused by hydrogen sulphide. Adding air prevents fouling of the sewage and keeps it "fresh." Literature shows that in every two-hour period, a supply of air equal to 10% of the content of the pipeline is required to keep the sewage "fresh." The air supply to the discharge pipeline is provided by a suitable compressor without a boiler.

### Discharge pipe flushing or purging the discharge pipeline

If the flow velocity in a discharge pipeline does not reach the required minimum, or if a discharge pipeline is laid with high and low points (in this case, ventilation is only to the next high point), pressure flushing helps. The delivery rate of the compressed air system should be selected such that the flow velocity of the water column or the individual water plugs in the discharge pipeline is at least 1 m/s. In general, the calculations of the required air pressure and the air quantity when flushing or purging a discharge pipeline are to be equated with the calculation for the pump system. The velocity of the water column increases as the discharge pipeline becomes increasingly empty, corresponding to the compressed air system's properties. The system calculation is thus based on the theoretically least favourable case, the beginning of the flushing or purging process.

#### **Grease separators**

EN 1825-1 DIN 4040 Grease separators are used to hold back organic oils and greases. Sewage with faecal matter cannot be introduced, nor can rainwater and sewage with mineral oils or greases. A grease separator consists of a sludge trap, the grease separator itself and a sampling point. Suspended matter is separated in the sludge trap. The separation of oils and greases in the grease separator takes place using gravity alone. Emulsions and dispersions of oil and grease can be held back only minimally or not at all. Sewage or rainwater containing faecal matter may not be introduced. Operation is limited to wastewater.

If the separator is located below the backflow level, a lifting plant must be installed. The design of the grease separator will be determined by the wastewater inflow, the connected grease inlets of the installations (hotel, canteen kitchen, etc.) and the density/concentration of the fluid.





#### **Oil/petrol separator**

Oil/petrol separators are used for environmental protection of natural bodies of water and sewer systems. Their functional principle is based on the differences in specific density of waterinsoluble materials. The materials on the surface of the water are separated from the water by corresponding inlet systems and drained separately.

#### Selecting switching devices for submersible pumps

#### Selecting switching devices

A wide variety of factors must be considered when selecting switching devices. Thus, the selection of functions is not the only important factor; even more important is how well the electrical part of the pump is tuned to the switching device. The most important fundamental is the tuning between the rated motor power (setting + 10% over type plate information) at the corresponding nominal voltage and the specified current of the switching device, as the safety functions (tripping functions) such as motor protection are based on these values. Furthermore, the switching device must be tuned to the installation. Thus, the installation location has to be considered here. This means making sure that the switching device has the correct protection class (IP) to prevent ingress of moisture. It is likewise of fundamental importance to observe the explosion protection directives. The switching devices Wilo offers are designed for

|                                                    | ER1_A                                        | SK530<br>incl. float switch                  |
|----------------------------------------------------|----------------------------------------------|----------------------------------------------|
| No. of pumps that can be connected                 | 1                                            | 2 /1 possible                                |
| Electrical connection                              |                                              |                                              |
| 3∼400 V                                            | •                                            | •                                            |
| ~230 V                                             | •                                            |                                              |
| ~230 V                                             | •                                            | •                                            |
| leutral conductor                                  | Not required                                 | Not required                                 |
| lirect start                                       | •                                            | •                                            |
| lax. power for direct start                        | $P_2 \le 4  kW$                              | $P_2 \le 3 \text{ kW}$                       |
| urrent for direct start                            | 0.5-10 A                                     | 1-10 A                                       |
| tar-delta                                          |                                              |                                              |
| lax. power for star-delta                          |                                              |                                              |
| lax. current for star-delta                        |                                              |                                              |
| 0 Hz frequency                                     | •                                            | •                                            |
| requency 60 Hz                                     | •<br>IP 41                                   | –<br>IP 41                                   |
| rotection class                                    | IP 41                                        | IP 41                                        |
| evel systems                                       |                                              |                                              |
| neumatic pressure sensor (diving bell)             |                                              |                                              |
| lectronic pressure sensor (4–20 mA) (level sensor) |                                              | ,                                            |
| loat switch(es)                                    | Yes (max. 2)                                 | Yes (max. 3)                                 |
| lotor monitor                                      |                                              |                                              |
| valuation–thermal winding contact (WSK)            | •                                            | •                                            |
| valuation–PTC                                      | •                                            | -                                            |
| valuation–leakage (Di)                             | -                                            | -                                            |
| lectronic motor protection                         | •                                            | •                                            |
| lotor protection switch                            | -                                            | -                                            |
| ault signals/run signals                           |                                              |                                              |
| ollective run signal                               | •                                            | •                                            |
| ollective fault signal                             | •                                            | •                                            |
| ndividual run signal                               | _                                            | 0                                            |
| ndividual fault signal                             | _                                            | 0                                            |
| eparate signal contact for high water              | —                                            | -                                            |
| ntegrated alarm (buzzer)                           | —                                            | -                                            |
| attery-powered alarm (integrated battery)          | -                                            | _                                            |
| operation/display                                  |                                              |                                              |
| CD display                                         | -                                            | _                                            |
| arameter adjustment                                | Potentiometer                                | Potentiometer                                |
| licroprocessor–controlled                          | -                                            | _                                            |
| ersion with plug and cable                         | -                                            | _                                            |
| lain switch (3–pole)                               | •                                            | _                                            |
| oftware                                            |                                              |                                              |
| ump starts                                         |                                              |                                              |
| lapsed time indicator                              |                                              |                                              |
| utomatic pump duty cycling                         |                                              |                                              |
|                                                    |                                              | •                                            |
| eneral                                             |                                              | 0 to +40°C                                   |
| mbient temperature                                 | 0 to +40°C                                   | U to +40°C                                   |
| djustable delay time                               | 0-120 sec.                                   |                                              |
| est run                                            | •                                            |                                              |
| ogic reversal of inputs                            | •                                            |                                              |
| rimary application                                 |                                              |                                              |
|                                                    | TC 40, TS 40, TS 50,<br>TS 65, TP 50, TP 65, | TC 40, TS 40, TS 50,<br>TS 65, TP 50, TP 65, |
|                                                    | TM/TMW 32, MTS 40,<br>STS 80, STC 80, CP     | TM/TMW 32, MTS 40,<br>STS 80, STC 80, CP     |

•Standard Optional – Function not available

installation in "non-potentially explosive environments." This means that these devices may not be installed in explosion-protected rooms. However, the switching device can be used in potentially explosive areas by using Ex isolating relays and Zener barriers (also refer to "Ex isolating relay" on page 25 and "Zener barrier" on page 29). These additional switch boxes are placed between the switching device and pump/level control outside of the potentially explosive area. The selection of the functions of the switching device should be viewed in the context of the installation (information that can be evaluated, signal functions, alarm etc.) and the pump. The motor protection function (motor monitor) can be tripped in pumps in different ways, and thus is dependent on the capabilities of the switching device.

| DrainControl 1                                                           | DrainControl 2                                                                                   | DrainControl PL1                                      | DrainControl PL2                                                             | SK 545             |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------|--------------------|
| 1                                                                        | 2                                                                                                | 1                                                     | 2/1 possible                                                                 | 1 or 2             |
| •                                                                        | •                                                                                                | •                                                     | •                                                                            | •                  |
| •                                                                        | •                                                                                                |                                                       | -                                                                            | -                  |
| With/without                                                             | With/without                                                                                     | Required                                              | Required                                                                     | –<br>Not required  |
| $P_2 \le 4 \text{ kW}$                                                   | $P_2 \le 4 \text{ kW}$                                                                           | $P_2 \le 4 \text{ kW}$                                | $P_2 \le 4 \text{ kW}$                                                       |                    |
| 0.5-10 A                                                                 | 0.5-10 A                                                                                         | 0.3-12 A                                              | 0.3-12 A                                                                     | -                  |
| •                                                                        | •                                                                                                | -                                                     | 0                                                                            | -                  |
| $P_2 \le 5.5 \text{ kW}$                                                 | $P_2 \le 5.5 \text{ kW}$                                                                         |                                                       | 0                                                                            | -                  |
| 55.1-71A                                                                 | 55.1-71 A                                                                                        |                                                       | 0                                                                            |                    |
| •                                                                        | •                                                                                                | •                                                     | •                                                                            | •                  |
| –<br>IP 54                                                               | –<br>IP 54                                                                                       | IP 65                                                 | •<br>IP 65                                                                   | –<br>IP 20         |
|                                                                          | -                                                                                                | •                                                     | •                                                                            | -                  |
| •                                                                        | •                                                                                                | •                                                     | •                                                                            | -                  |
| Yes (max. 5)                                                             | Yes (max. 5)                                                                                     | Yes (max. 3)                                          | Yes (max. 4)                                                                 | -                  |
| •                                                                        | •                                                                                                | Yes (2x thermal winding contacts)                     | Yes (2x thermal winding contacts)                                            | •                  |
| •                                                                        | •                                                                                                | –                                                     | —                                                                            | -                  |
| •                                                                        | •                                                                                                | _                                                     | -                                                                            | •                  |
| •                                                                        | •                                                                                                | •                                                     | •                                                                            | -                  |
|                                                                          | _                                                                                                | 0                                                     | 0                                                                            |                    |
|                                                                          | -                                                                                                | -                                                     | -                                                                            |                    |
| •                                                                        | •                                                                                                | •                                                     | •                                                                            | -                  |
| •                                                                        | •                                                                                                |                                                       |                                                                              | •                  |
|                                                                          |                                                                                                  | -                                                     |                                                                              |                    |
| _                                                                        | _                                                                                                | •                                                     | •                                                                            | _                  |
| -                                                                        | _                                                                                                | -                                                     | -                                                                            | -                  |
| •                                                                        | •                                                                                                | •                                                     | •                                                                            | _                  |
| Menu-controlled/keys                                                     | Menu-controlled/keys                                                                             | Menu-controlled/rotary knob                           | Menu-controlled/rotary knob                                                  | -                  |
| •                                                                        | •                                                                                                | •                                                     | •                                                                            | -                  |
| -                                                                        |                                                                                                  |                                                       |                                                                              | -                  |
| •                                                                        | •                                                                                                |                                                       |                                                                              |                    |
| -                                                                        | -                                                                                                | •                                                     | •                                                                            | -                  |
| •                                                                        | •                                                                                                | •                                                     | •                                                                            | _                  |
|                                                                          | •                                                                                                |                                                       | •                                                                            |                    |
| 0 to +40°C                                                               | 0 to +40°C                                                                                       | -20 to +60°C                                          | -20 to +60°C                                                                 | 0 to +40°C         |
| 0-60 sec. for base duty pur                                              | p 0-60 sec. for base duty pump                                                                   | 0-180 sec.                                            | 0-180 sec. for base duty pump                                                |                    |
| -                                                                        |                                                                                                  | •                                                     | •<br>_                                                                       | _<br>_             |
| TC 40, TS 40, TS 50,                                                     |                                                                                                  | TC 40, TS 40, TS 50,                                  |                                                                              | TP 80-150, MTS 40, |
| TS 65, TP 50, TP 65,<br>TP 80–150, STS 80–100,<br>STC 80–100, MTS 40, CP | TC 40, TS 40, TS 50,<br>TS 65, TP 50, TP 65,<br>TP 80-150, STS 80-100,<br>STC 80-100, MTS 40, CP | TS 65, TP 50, TP 65,<br>MTS 40, STS 80, STC 80,<br>CP | TC 40, TS 40, TS 50,<br>TS 65, TP 50, TP 65<br>MTS 40, STS 80, STC 80,<br>CP | CP                 |

#### Sump design

#### Sump design/planning

- Sump size and pump selection are not the only critical factors when sizing a pump station. Rather, pipelines, fittings and installed parts of the sump such as pipework are of decisive importance.
- Always provide shut-off valves for service and repair work. In some cases, these are already prescribed by standards.
- End discharge pipelines must be sized in accordance with the parameters (such as flow velocity) specified by the standards.
- Always place backflow valves at the top of the sump in the discharge pipeline, as this can prevent deposits.
- Sump bottoms should be designed at an angle of up to 40° to facilitate the inflow of solids to the hydraulics of the pump.
- Provide baffles at the inlet of the sump to prevent damage to the pump from inflowing water and to stabilise the fluid (prevents air from entering the pump).
- During the construction phase, provide a foundation earth electrode or earth strip for potential equalisation.
- The non-return valve and the gate in the fitting shaft should be installed towards the very top of the pipe, so that they are easily accessible for maintenance, cleaning and inspection.

- To minimise water hammer, provide a water hammer dampening system a short distance above the check valve (preferably with floating ball). Similar results can also be obtained using a check valve with floating ball.
- If the transfer point (sewer) is below the sump level, vents must be provided, as otherwise the generated suction would completely drain the entire sump, including the pump. This results in ventilation problems.

#### Fault diagnostics

### Fault diagnostics (also refer to "Maintenance checklist" on page 70)

### When does cavitation occur, and how can cavitation problems be solved?

- Combination of vent line that is too small or clogged with high fluid temperature.
   > Install/redimension or clean the vent line.
- Long suction line for pumps in dry sump
- installation. > Select a suitable new pump.
  There is air and/or gas in the fluid. > Ensure that the water coverage of the pump is correct and/or install a baffle at the inlet so that the water jet does not impact close to the pump; change the position of the signal transmitter.
- NPSH<sub>system</sub> > NPSH<sub>pump</sub> or NPSH<sub>present</sub> > NPSH<sub>required</sub> has not been followed when selecting the pump. > Reduce the impeller size; reduce the delivery rate; reduce the fluid temperature; reconfigure a suitable pump.
- Pump inlet is clogged. > Clean the inlet pipeline or sump; clean the pump hydraulics.
- Fluid temperature is too high by a significant amount (> 75°C). > Select a suitable new pump.
- There is air in the pump/discharge pipeline and the pump cannot be ventilated. > Install a vent line or clean the existing one.
- Pump has no counterpressure and runs out of its curve towards the right. > Select a suitable pump; increase the resistances in the end discharge pipeline by installing artificial resistance such as additional bends, pipeline with higher pipe friction loss values etc.

### Why does the pump not supply the desired pump capacity (H, Q)?

- Direction of rotation of the pump wrong (possible with three-phase current only).
  Reverse two phases (wires at the bus bar of the pump) to correct the direction of rotation.
- Impeller is damaged due to abrasion or corrosion. > Replace damaged parts (such as corroded impeller).
- Pump inlet or impeller is clogged.
- > Clean hydraulics.
- Non-return valve is clogged or blocked.
   > Clean fitting.
- Gate valve in the discharge pipeline is not open all the way. > Open gate valve all the way.
- There is air and/or gas in the fluid. > Ensure that the water coverage of the pump is correct and/or install a baffle at the inlet so that the water jet does not impact close to the pump.
- Motor bearings of the pump are defective.
   > Replace motor bearings-contact Wilo after-sales service.
- Pump vent line is clogged (in case of delivery head problems). > Check and clean if necessary.

### Why does the switching device trip the overcurrent/overload signal?

- Mains voltage has dropped. > Check voltage fluctuations.
- Viscosity of the fluid is too high, resulting in a higher load on the motor. > Reduce impeller size or configure a new pump.
- Pump does not run on the specified curve.
   If necessary, restrict pump output using shut-off valve to increase counterpressure.
- Temperature rise of the motor too high
   Check number of starts and stops and, if necessary, limit them using the switching device via a delay time.
- Direction of rotation of the pump wrong (possible with three-phase current only).
  Reverse two phases (wires at the bus bar of the pump) to correct the direction of rotation.
- One phase of the power supply of the pump has failed. > Check power supply connections and replace fuse if defective.
- Winding of the pump is defective.
  > Contact Wilo after-sales service.
- Motor bearings of the pump are defective.
   > Replace motor bearings-contact Wilo
- after-sales service.

### Why do the pump housing and discharge pipeline become clogged with deposits?

- As a result of a lower flow rate, deposits settle due to the decreased flow velocity > Check the duty point of the pump and pipeline sizing with regard to flow velocity.
- Too frequent operation with quantities that are too small. > Redefine switching levels of the system (larger volume per pumping process), increase delay time using the switching device if necessary.

### What causes water hammer and how can it be prevented/reduced?

- When the pump starts, a large volume is pushed through a small pipe diameter.
  Check the duty point of the pump and pipeline sizing with regard to the flow velocity.
- Air cushion(s) in the discharge pipeline.
  > Install vent valves directly above the non-return valve or in high points of the pipeline.
- Pump pumps the entire volume into the discharge pipeline too quickly. > Switch from two-pole pump to four-pole pump or use soft starter/frequency converter with start-up ramp for slower pump start.
- Pump starts very frequently, causing irregular pressure waves to build up in the discharge pipeline. > Adjust delay time using the switching device.
- Quick-closing fitting at the end of the discharge pipeline. > Replace fitting and use slow-closing fitting.

### What causes noises of the non-return valve and how can they be reduced/prevented?

The valve does not close quickly enough and, after the pump cuts out, is slammed onto the valve seat by the water column that covers it.
> Replace the valve with a quick-closing valve, use a non-return valve with rubber seat, adjust the delay time using the switching device.

### Why is the pump/system too loud? How can noise problems be solved?

- Direction of rotation of the pump wrong (possible with three-phase current only).
  > Reverse two phases (wires at the bus bar of the pump) to correct the direction of rotation.
- Impeller is damaged due to abrasion or corrosion. > Replace damaged parts (such as corroded impeller).
- Pump inlet or impeller is clogged. > Clean hydraulics.
- Motor bearings of the pump are defective.
   > Replace motor bearings-contact Wilo after-sales service.
- Pump vent line is clogged. > Check and clean if necessary.
- Fluid level in tank is too low. > Check level switch and readjust if necessary.
- Pipelines are causing vibration noises.
   Check elastic connections and ensure that pipelines are securely anchored in place, check wall ducts.
- Pump in sump can also be heard inside the building. > Proper soundproofing is not in place between sump and building; disconnect direct, rigid connection between building and sump.
- System can be heard throughout the building.
  System is not insulated from the floor/wall; use insulating strips to insulate it.

#### You can reach Wilo after-sales service at:

Phone (+49) 1805 W•I•L•O•K•D\* 9•4•5•6•5•3

or (+49) 231 41027900

\*12 cents per minute

Representatives are available anytime between 7 a.m. and 5 p.m.!

At the weekend and after hours, you can reach us using our interactive voice response system with call-back guarantee!

### Checklists for installation, operation and maintenance

### Checklist – Design

| Determining the discharge criteria             | 🗆 Separate system                     | □ Combined system        |
|------------------------------------------------|---------------------------------------|--------------------------|
| Rainwater disposal                             | Location of the building              |                          |
| (if in combined system)                        | Consider effect of wind for rainwate  | r 🗆 Yes 🛛 No             |
| Gutter length 1                                | Rainfall to roof area                 | °                        |
| Roof depth<br>(vert. projection)               | Gutter length 1                       | m                        |
|                                                | Gutter length 2                       | m                        |
| GutterJength 2 Roof depth<br>(hor. projection) | Roof depth (vertical)                 | m                        |
|                                                | Roof depth (horizontal)               | m                        |
| Type of building                               | □ Single-family home                  | □ Multi-family home      |
|                                                | □ Office building                     | 🗆 Industrial building    |
|                                                | 🗆 Public building                     |                          |
| Installation criterion                         | $\Box$ Inside the building            | □ Outside the building   |
| Backflow level                                 | Backflow level or sump cover is locat | ted m                    |
|                                                | above the pump(s)                     |                          |
| Installation                                   | Desired number of pumps               | pcs.                     |
|                                                | of which                              | pcs. are standby pump(s) |

#### 2. Defining the boundary conditions

| Current/voltage supply         | 🗆 1~220 V      | 🗆 3~400 V          | 🗆 50 Hz        |        |  |
|--------------------------------|----------------|--------------------|----------------|--------|--|
|                                | □1~230 V       | 🗆 3~340 V          | 🗆 60 Hz        |        |  |
| Types of wastewater and sewage | □ Domestic     | sewage             | 🗆 Rair         | nwater |  |
|                                | 🗆 Industrial   | wastewater         | 🗆 Sea          | water  |  |
|                                | 🗆 Brackish w   | ater               |                |        |  |
|                                | Fluid contain  | s faecal matter    | □ Yes          | □ No   |  |
|                                | Contains soli  | ds                 | □ Yes          | □ No   |  |
|                                | Max. size of t | he solids: ø       |                | mm     |  |
|                                | Long-fibre p   | articles in the fl | uid 🛛 🗆 Yes    | □ No   |  |
|                                | pH value:      |                    |                |        |  |
|                                | Fluid temper   | ature:°(           | CF             |        |  |
|                                | Zone 1 explo   | sion protection    | required 🛛 Yes | □ No   |  |
|                                | Additional in  | formation about    | the fluid:     |        |  |

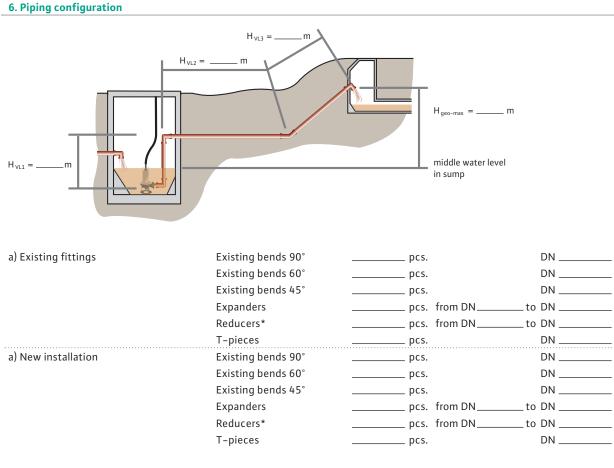
This list makes no claim to completeness, but is intended solely as an aid to orientation. We disclaim any liability based on this information.

#### 3. Determining the wastewater inflow Q<sub>w</sub>

| Wastewater calculation | Shower                  | pcs. x 0.8 l/s = | I/s |
|------------------------|-------------------------|------------------|-----|
| wastewater calculation | Shower                  |                  | I/S |
|                        | Bathtub                 | pcs. x 0.8 l/s = | I/s |
|                        | Bidet                   | pcs. x 0.8 l/s = | I/s |
|                        | Sink                    | pcs. x 0.8 l/s = | I/s |
|                        | Dishwasher              | pcs. x 2.0 l/s = | I/s |
|                        | Washing machine (10 kg) | pcs. x 1.5 l/s = | I/s |
|                        | Toilet                  | pcs. x 1.0 l/s = | I/s |
|                        | Wash basin              | pcs. x 1.0 l/s = | I/s |
|                        | Floor drain DN 50       | pcs. x 0.8 l/s = | I/s |
|                        | Floor drain DN 70       | pcs. x 1.5 l/s = | I/s |
|                        | Floor drain DN 100      | pcs. x 2.0 l/s = | I/s |
|                        | Urinal                  | pcs. x 0.5 l/s = | I/s |
|                        |                         | Total            | I/s |

| 4. Determining the rainwa | ter mnow Qr                  |                           |
|---------------------------|------------------------------|---------------------------|
| Sealed areas              | Patio m <sup>2</sup>         | Garage m <sup>2</sup>     |
|                           | Parking space m <sup>2</sup> | Path m <sup>2</sup>       |
|                           | Carport m <sup>2</sup>       | Other area m <sup>2</sup> |
|                           | Driveway m <sup>2</sup>      |                           |

5. Determining the combined water outflow  $Q_c$ 


$$Q_c = Q_r + Q_w =$$
\_\_\_\_\_  $I/s =$ \_\_\_\_\_  $m^3/h$ 

| a) Existing pipelines             | Length of the discharge pipeline                            |          |  |
|-----------------------------------|-------------------------------------------------------------|----------|--|
|                                   | Discharge pipeline* DN                                      | Material |  |
|                                   | Inlet pipeline DN                                           | Material |  |
| b) Pipelines for new installation | Length of the discharge pipeline = distance to sewer system |          |  |
|                                   | Nominal width* of the pump DN                               |          |  |
|                                   |                                                             |          |  |
|                                   | Discharge pipeline* DN _                                    | Material |  |

\*For sewage containing faecal matter:

Nominal diameter of the pipeline  $\geq$  nominal diameter of the pump

This list makes no claim to completeness, but is intended solely as an aid to orientation. We disclaim any liability based on this information.



\*For sewage containing faecal matter:

Nominal diameter of the pipeline  $\geq$  nominal diameter of the pump

This list makes no claim to completeness, but is intended solely as an aid to orientation. We disclaim any liability based on this information.

| Checklist for selecting switching devices                   | Yes / No    |
|-------------------------------------------------------------|-------------|
| Ambient temperature                                         | <u>۹</u> ۵C |
| Delay time                                                  | sec.        |
| Test run                                                    |             |
| Evaluation information                                      |             |
| Pump starts                                                 |             |
| Elapsed time indicator                                      |             |
| Automatic pump duty cycling                                 |             |
| Number of pumps that can be connected                       | pcs.        |
| Control functions                                           | F           |
| Pneumatic pressure sensor (diving bell)                     |             |
| Electronic pressure sensor (level sensor = pressure sensor) |             |
| Float switch                                                |             |
|                                                             |             |
| Electrical connection                                       |             |
| 1~230 V                                                     |             |
| 3~230 V                                                     |             |
| 3~400 V                                                     |             |
| Neutral conductor                                           |             |
| Direct start                                                |             |
| Star/delta start                                            |             |
| Max. current strength (see pump type plate)                 | A           |
| Frequency<br>Protection class                               | H2          |
|                                                             | IF          |
| Motor monitor                                               |             |
| Evaluation via thermal winding contacts                     |             |
| Evaluation via PTC                                          |             |
| Leak monitoring                                             |             |
| Electronic motor protection                                 |             |
| Motor protection switch                                     |             |
| Fault/run signals                                           | ·····       |
| Collective run signal                                       |             |
| Collective fault signal                                     |             |
| Individual run signal                                       |             |
| Individual fault signal                                     |             |
| Separate high water signal contact                          |             |
| Integrated alarm (buzzer)                                   |             |
| Battery-powered alarm                                       |             |
| Display/operation                                           |             |
| LCD display                                                 |             |
| LEDs                                                        |             |
| Red button                                                  |             |
| Type of function                                            |             |
| Microprocessor-controlled                                   |             |
| Electronic                                                  |             |
| Electro-mechanical                                          |             |
| Version                                                     |             |
| Main switch                                                 |             |
| Switching device with plug and cable                        |             |

This list makes no claim to completeness, but is intended solely as an aid to orientation. We disclaim any liability based on this information..

# Installation checklist (1)

| Plant                                                                                          |                |      |
|------------------------------------------------------------------------------------------------|----------------|------|
| Lifting plant for wastewater containing faecal matter, without comminution,                    |                |      |
| with minimum nominal diameter DN 80                                                            | DIN EN 12050-1 |      |
| Lifting plant for wastewater containing faecal matter, with comminution,                       |                |      |
| with minimum nominal diameter DN 32                                                            | DIN EN 12050-1 |      |
| • For buildings that depend on the operation of the plant,                                     | DIN EN 12050-1 |      |
| a twin-head pump unit must be provided.                                                        |                |      |
| • Lifting plant for wastewater containing faecal matter is closed off from the surrounding roo | m EN 12056-4   |      |
| The plant is installed so that it is twist-proof and frost-free                                | EN 12056-4     |      |
| • The plant is installed so that it is protected from buoyancy and pressing water              | EN 12056-4     |      |
| The collector tank is not structurally connected to the building                               | EN 12056-4     |      |
| (e.g. sump); rather, the tank is freestanding.                                                 |                |      |
| • The area surrounding the plant is at least 60 cm on every side                               | EN 12056-4     |      |
| • Rainwater is not fed to the lifting plant for wastewater containing faecal matter            | EN 12056-4     | <br> |
| located inside the building (combined drainage permitted outside the building only)            |                |      |
| An inspection opening is provided for freestanding-type installation                           |                |      |
| Backflow protection is installed as                                                            | EN 12056-4     |      |
| backflow loop cm above backflow level                                                          | EN 12056-"4    |      |
| Backflow seal only if                                                                          | EN 12056-4     |      |
| There is a gradient to the sewer                                                               | LN 12050-4     |      |
| The room is of secondary use                                                                   |                |      |
| Another toilet is provided above the backflow level.                                           |                |      |
| His possible to do without this drain in case of backflow                                      |                | _    |
|                                                                                                | DIN EN 120E0 1 |      |
| Diaphragm hand pump for emergency drainage for single pump stations is installed               | DIN EN 12050-1 |      |
| Pump sump for room drainage is installed                                                       | DIN EN 12050-1 |      |
| • Check valve is installed on the discharge side                                               | DIN EN 12050-1 |      |
| (Exception: volume of the discharge pipeline is less than the usable volume of the plant)      |                |      |
| A shut-off valve is installed on the inlet side                                                | DIN EN 12050-1 |      |
| A shut-off valve is installed on the pressure side behind the check valve                      | DIN EN 12050-1 |      |
| Ventilation of the lifting plant (if present) above roof level only                            | DIN EN 12050-1 |      |
| At least DN 70 for lifting plants without comminution/DN 50 with comminution                   |                |      |
| All connections are designed to be sound-absorbing                                             | DIN 4109       |      |
| Harmful materials (see operating instructions) have already been removed from the              |                |      |
| fluid before reaching the unit                                                                 |                |      |
| • A fault signal device (acoustic, visual or Building Management System) is                    |                |      |
| installed where it can be easily seen                                                          |                |      |
| Pipes                                                                                          |                |      |
| <ul> <li>Pipes can empty by themselves</li> </ul>                                              | EN 12056-4     |      |
| • All pipes are laid without tension                                                           | EN 12056-4     |      |
| <ul> <li>The weight of fittings and pipelines is borne by supports/fasteners</li> </ul>        | EN 12056-4     |      |
| • There is no other connection to the discharge pipeline after the lifting plant               | EN 12056-4     |      |
| (e.g. downpipe)                                                                                |                |      |

Individual pipes are connected in the top area or above the collecting pipe

to prevent deposits

This list makes no claim to completeness, but is intended solely as an aid to orientation. We disclaim any liability based on this information.

(e.g. downpipe)The pipe cross section is not tapered at any point

EN 12056-4

# Installation checklist (2)

| <ul> <li>The selected duty point lies in the middle one-third</li> </ul>                              |                     |  |
|-------------------------------------------------------------------------------------------------------|---------------------|--|
| of the hydraulic curve provided by the manufacturer in order to achieve optimum c                     | apacity utilisation |  |
| and service life                                                                                      |                     |  |
| <ul> <li>The free passage of the pump is sized according to the</li> </ul>                            |                     |  |
| requirements                                                                                          |                     |  |
| • NPSH <sub>system</sub> > NPSH <sub>pump</sub> or NPSH <sub>present</sub> > NPSH <sub>required</sub> |                     |  |
| <ul> <li>Sufficient access for service and maintenance is guaranteed</li> </ul>                       |                     |  |
| <ul> <li>The units are adequately protected from external influences</li> </ul>                       |                     |  |
| <ul> <li>The power supply has been checked with regard to voltage fluctuations</li> </ul>             |                     |  |
| <ul> <li>Corresponding settings have been made on the switching device</li> </ul>                     |                     |  |
| <ul> <li>The position of the switching device is flood-proof</li> </ul>                               |                     |  |
| There are no reducers in the discharge line                                                           | EN 12056-2          |  |

### Limited-use plant

| • The plant is installed below the backflow level (for renovation, also permitted above the plant)  | EN 12056-1     |  |
|-----------------------------------------------------------------------------------------------------|----------------|--|
| The plant is installed immediately behind the toilet                                                | EN 12056-1     |  |
| <ul> <li>All connected drainage sources are in the<br/>same room</li> </ul>                         | EN 12056-1     |  |
| • The plant is on the same level as the toilet                                                      | EN 12056-1     |  |
| <ul> <li>No bathtubs, washing machines or dishwashers are<br/>connected</li> </ul>                  | EN 12056-1     |  |
| No separate ventilation is connected                                                                | DIN EN 12050-3 |  |
| <ul> <li>Ventilation takes place free of odour via the built-in ventilation of the plant</li> </ul> | DIN EN 12050-3 |  |
| The minimum inner diameter of the discharge pipeline and the following fittings                     | DIN EN 12050-3 |  |
| is at least 20 mm for units with comminution                                                        |                |  |
| (for those without comminution, 25 mm)                                                              |                |  |
| There is a toilet above the backflow level with free gravity flow to the sewer                      | DIN EN 12050-3 |  |
| • The end user has been informed of the danger of clogs caused by sanitary napkins, condoms etc.    | DIN EN 12050-3 |  |

# Pumping stations (outside the building)

| Pipes have been laid on a steady uphill/downhill incline without high and low points                 |       |
|------------------------------------------------------------------------------------------------------|-------|
| Vent valves are installed in high points                                                             |       |
| The minimum flow velocity is assured at all times                                                    |       |
| • For pressure drainage, the contents of the pipeline are flushed at least $\leq$ 8 hers. (EN 1671); |       |
| Recommendation: flush $\leq$ 4 hers.!                                                                |       |
| • All fittings have the same free passage as the pipeline                                            |       |
| • The pump sump has a funnel shape with° incline for better                                          |       |
| inflow of the fluid to the pump                                                                      |       |
| The surfaces of the pump sump are smooth                                                             |       |
| All construction debris has been removed and the pump sump is clean                                  |       |
| The sump can hold the pipeline volume                                                                |       |
| The exit losses have been taken into consideration in the design                                     |       |
| • The compaction of the sump is in accordance with ATV-A 139 and/or DIN EN 1610 DIN EN 1610          |       |
| • A pressure test has been conducted in accordance with the applicable directives for                |       |
| a pressure drainage station (high points must first be bled) DIN 4279 T1-                            | -T9 🗆 |

This list makes no claim to completeness, but is intended solely as an aid to orientation. We disclaim any liability based on this information.

#### Commissioning

| • The parameters of the switching device match the specifications on the type plate of the pump                                  |  |
|----------------------------------------------------------------------------------------------------------------------------------|--|
| For a potentially explosive area, the pump has been checked for explosion protection                                             |  |
| (type plate, installation and operating manual); Ex zone must be specified by the owner/management!                              |  |
| The sump has been cleaned before commissioning (particularly of construction debris)                                             |  |
| The sump has been filled for test purposes; repeated, manual filling with clear water is     provided                            |  |
| • All installation-related parts are connected to each other so that they are firm and pressure-tight (pipeline, pump flow etc.) |  |
| • The pump has been ventilated at the discharge line<br>(by gently lifting the pump by the chain)                                |  |
| The direction of rotation of the unit (3~) has been checked                                                                      |  |
| The current consumption of the pump has been checked                                                                             |  |

#### Maintenance

Sewage lifting plants must always be maintained by qualified specialists in accordance with EN 12056-4. Protective gloves must be worn during maintenance work to prevent injuries and infections. A repeated filling of the plant with clear water must be provided for test purposes. Regular maintenance intervals in accordance with EN 12056-4,5.1 should be maintained.

#### Maintenance work to be carried out on regularly used mini lifting plants

- for limited use (e.g. Wilo-DrainLift KH 32):
- Flush the plant several times.
- Pull the power plug and remove the cover.
- Wear protective gloves because of the risk of injury posed by the macerator!
- Clean the sieve basket, remove solids from tank and clean the vent.
- Replace the active carbon filter.
- Reassemble the unit.
- Insert the power plug.

#### Maintenance work to be carried out on lifting plants for wastewater containing faecal matter (e.g. Wilo-DrainLift S1/7):

- Test the connecting parts of pipelines and fittings for leaks.
- Check the function and ease of movement of the gates; clean the non-return valve if necessary.
- Check the pumping equipment (tank/pump/impeller)
- Disconnect the power supply.
- Close the gate valve.
- Drain the collector tank (for example, using a diaphragm hand pump).
- Remove impurities from the walls of the tank and flush the tank several times with clear water.
- Reassemble the unit.
- Open the gate valve and reconnect the power supply.
- Visually inspect the switching device and tank.
- Check the function of the switching device.
- Check the current consumption.

#### Maintenance work to be carried out on sump pump stations (e.g. Wilo-Drain WS):

- Ensure that all electrical equipment is de-energised.
- Remove deposits from pump parts and the walls of the sump.
- Check the discharge pipelines and flush or clean them.
- Check the switching device memory/Building Management System/counters for fault messages.
- Check the function of electrical equipment and fittings.
- Check the switching levels (e.g. check measuring bell with pressure hose for leaks).
- Visually inspect the level sensor.
- Switch on the current and check the current consumption.
- Check pump seat for leaks (visual inspection).

This list makes no claim to completeness, but is intended solely as an aid to orientation. We disclaim any liability based on this information.

# Tables and diagrams for calculation examples

| Table 1: Values for characteristic drainage K                                        |         |  |  |  |  |  |
|--------------------------------------------------------------------------------------|---------|--|--|--|--|--|
| Building types                                                                       | K value |  |  |  |  |  |
| Irregularly used buildings such as residential buildings, restaurants, guest-houses, | 0.5     |  |  |  |  |  |
| hotels, office buildings etc.                                                        |         |  |  |  |  |  |
| Hospitals, large food service facilities, hotel facilities etc.                      | 0.7     |  |  |  |  |  |
| Regularly used buildings such as schools, frequently used installations              | 1.0*    |  |  |  |  |  |
| such as in laundries, public toilets, public shower facilities etc.                  |         |  |  |  |  |  |
| Installations for special use such as laboratories in industrial operations          | 1.2     |  |  |  |  |  |

\* If no other defined drainage values are known.

# Table 2: Drain connection values (DU) for sanitary fixtures (in accordance with EN 12056-2:2000)

For single downpipe systems with partially-filled connection pipes:

| Sanitary fixture     | DU [l/s]                  |       | DU [m³/h] |
|----------------------|---------------------------|-------|-----------|
| Wash basin, bidet    | 1                         | 0.5   | 1.8       |
| Sink, household c    | lishwasher, kitchen drain | 0.8   | 2.88      |
| Shower without s     | topper                    | 0.6   | 2.16      |
| Shower with stop     | per                       | 0.8   | 2.88      |
| Washing machine      | e, up to 6 kg of laundry  | 0.8   | 2.88      |
| Washing machine      | e, up to 10 kg of laundry | 1.5   | 5.4       |
| Commercial or in     | dustrial dishwasher       | 2.0** | 7.2       |
| Urinal with flush    | valve (single)            | 0.5   | 1.8       |
| Up to 2 urinals      |                           | 0.5   | 1.8       |
| Up to 4 urinals      |                           | 1     | 3.6       |
| Up to 6 urinals      |                           | 1.5   | 5.4       |
| Per 2 additional u   | rinals                    | 0.5   | 1.8       |
| Floor drain:         | DN 50                     | 0.8   | 2.88      |
|                      | DN 70                     | 1.5   | 5.4       |
|                      | DN 100                    | 2.0   | 7.2       |
| Toilet with 6 l flue | shing cistern             | 2.0   | 7.2       |
| Toilet with 7.5 l fl | ushing cistern            | 2.0   | 7.2       |
| Toilet with 9 l flue | shing cistern             | 2.5   | 9         |
| Wash basin for fo    | ot care                   | 0.5   | 1.8       |
| Bathtub              |                           | 0.8   | 2.88      |

\*\* Please refer to manufacturer's specifications.

# Table 3: Water consumption figures (in accordance with DIN 1986-100, Table 4)

| Use case                                      | Fromlitres | tolitres |
|-----------------------------------------------|------------|----------|
| Single/multi-family home                      |            |          |
| Drinking, cooking, cleaning, per person/day   | 20         | 30       |
| Doing laundry, per kg                         | 25         | 75       |
| Toilet flushing, once                         | 6          | 10       |
| Bath                                          | 150        | 250      |
| Shower                                        | 40         | 140      |
| Watering the lawn, per m <sup>2</sup> /day    | 1.5        | 3        |
| Watering vegetables, per m²/day               | 5          | 10       |
| Hotel/institution                             |            |          |
| School, per person/day                        | 5          | 6        |
| Barracks, per person/day                      | 100        | 150      |
| Hospital, per person/day                      | 100        | 650      |
| Hotel, per person/day                         | 100        | 130      |
| Public swimming pool, per m³/day              | 450        | 500      |
| Fire hydrant, per second                      | 5          | 10       |
| Commerce/industry                             |            |          |
| Slaughterhouse, per head of large cattle      | 300        | 500      |
| Slaughterhouse, per head of small cattle      | 150        | 300      |
| Laundry, per washing station                  | 1000       | 1200     |
| Brewery, per hectolitre of beer               | 250        | 500      |
| Dairy, per litre of milk                      | 0.5        | 4        |
| Weaving mill, per kg of cloth                 | 900        | 1000     |
| Sugar factory, per kg of sugar                | 90         | 100      |
| Meat factory, per kg of meat/sausage          | 1          | 3        |
| Paper factory, per kg of fine paper           | 1500       | 3000     |
| Concrete factory, per m <sup>3</sup> concrete | 125        | 150      |
| Building trades, per 1000 bricks with mortar  | 650        | 750      |
| Food processing industry, per kg of starch    | 1          | 6        |
| Food processing industry, per kg of margarine | 1          | 3        |
| Weaving mill, per kg of lamb's wool           | 90         | 110      |
| Mining, per kg of coal                        | 20         | 30       |
| Agriculture                                   |            |          |
| Large cattle, per head/day                    | 50         | 60       |
| Sheep, calf, pig, goat, per head/day          | 10         | 20       |
| Transport                                     |            |          |
| Cleaning a car                                | 100        | 200      |
| Cleaning a lorry                              | 200        | 300      |
| Cleaning a goods wagon                        | 2000       | 2500     |
| Cleaning a poultry wagon                      | 7000       | 30000    |
|                                               |            |          |

# Table 4: Rainfall intensities in Germany (excerpt from DIN 1986-100:2002-03 Table A1)

 $r_{X(Y)}$  means a rainfall intensity that lasts for X minutes (duration) and statistically occurs every 1/Y years. Example:  $r_{5(0.5)}$  Five-minute rain that statistically occurs every 1/0.5 (=2) every 2 years.

| Location       | r <sub>5.2</sub><br>[l/(s x ha)] | r <sub>15.2</sub><br>[l/(s x ha)] | r <sub>5.30</sub><br>[l/(s x ha)] | r <sub>15.30</sub><br>[l/(s x ha)] | r <sub>5.100</sub><br>[l/(s x ha)] |
|----------------|----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|------------------------------------|
| Aachen         | 240                              | 121                               | 431                               | 214                                | 516                                |
| Aschaffenburg  | 293                              | 143                               | 539                               | 267                                | 649                                |
| Augsburg       | 285                              | 138                               | 499                               | 243                                | 595                                |
| Aurich         | 240                              | 121                               | 416                               | 214                                | 494                                |
| Bad Salzuflen  | 282                              | 133                               | 455                               | 233                                | 532                                |
| Bad Tölz       | 416                              | 205                               | 655                               | 355                                | 762                                |
| Bayreuth       | 285                              | 144                               | 524                               | 276                                | 630                                |
| Berlin         | 341                              | 169                               | 605                               | 321                                | 723                                |
| Bielefeld      | 260                              | 132                               | 475                               | 248                                | 570                                |
| Bonn           | 266                              | 132                               | 505                               | 248                                | 611                                |
| Braunschweig   | 289                              | 143                               | 498                               | 267                                | 591                                |
| Bremen         | 238                              | 118                               | 403                               | 202                                | 477                                |
| Chemnitz       | 340                              | 162                               | 552                               | 288                                | 646                                |
| Cottbus        | 260                              | 129                               | 477                               | 232                                | 574                                |
| Dessau         | 292                              | 137                               | 530                               | 250                                | 635                                |
| Dortmund       | 277                              | 134                               | 441                               | 226                                | 513                                |
| Dresden        | 297                              | 145                               | 540                               | 268                                | 648                                |
| Düsseldorf     | 227                              | 135                               | 518                               | 245                                | 626                                |
| Eisenach       | 269                              | 135                               | 478                               | 249                                | 570                                |
| Emden          | 246                              | 124                               | 444                               | 230                                | 532                                |
| Erfurt         | 243                              | 121                               | 404                               | 214                                | 476                                |
| Frankfurt/Main | 314                              | 145                               | 577                               | 268                                | 695                                |
| Halle/Saale    | 285                              | 137                               | 503                               | 250                                | 601                                |
| Hamburg        | 258                              | 129                               | 423                               | 232                                | 497                                |
| Hannover       | 275                              | 124                               | 538                               | 230                                | 655                                |
| Heidelberg     | 338                              | 158                               | 579                               | 287                                | 686                                |
| Ingolstadt     | 283                              | 138                               | 456                               | 243                                | 534                                |
| Kassel         | 273                              | 140                               | 505                               | 266                                | 608                                |
| Kiel           | 230                              | 112                               | 404                               | 192                                | 481                                |
| Köln           | 281                              | 138                               | 535                               | 266                                | 648                                |
| Leipzig        | 324                              | 147                               | 545                               | 276                                | 690                                |
| Lingen         | 316                              | 148                               | 588                               | 284                                | 709                                |
| Magdeburg      | 277                              | 129                               | 517                               | 232                                | 624                                |
| Mainz          | 333                              | 164                               | 603                               | 304                                | 723                                |
| Munich         | 335                              | 166                               | 577                               | 305                                | 685                                |
| Münster        | 283                              | 137                               | 510                               | 250                                | 611                                |
| Neubrandenburg | 330                              | 148                               | 607                               | 284                                | 731                                |
| Nuremberg      | 296                              | 145                               | 533                               | 272                                | 638                                |
| Rosenheim      | 402                              | 191                               | 733                               | 350                                | 880                                |
| Rostock        | 232                              |                                   | 375                               | 202                                | 438                                |
| Saarbrücken    | 252                              | 118<br>131                        | 448                               | 240                                | 534                                |
| Stuttgart      | 349                              | 169                               | 663                               | 325                                | 802                                |
| Würzburg       | 293                              | 169                               | 511                               | 266                                | 608                                |

# Table 5: Runoff coefficients C for calculating the rainfall rate $Q_r$

(DIN 1986-100:2002-03, Table 6)

| <b>)</b> . | Type of surfaces                                                                  | Runoff coefficient C |
|------------|-----------------------------------------------------------------------------------|----------------------|
|            | Impermeable surfaces, such as                                                     |                      |
|            | Sloping roofs > 3° incline                                                        | 1.0                  |
|            | Concrete surfaces                                                                 | 1.0                  |
|            | • Ramps                                                                           | 1.0                  |
|            | <ul> <li>Hardened surfaces with joint packing</li> </ul>                          | 1.0                  |
|            | Bituminous pavement                                                               | 1.0                  |
|            | Pavement with joint sealing                                                       | 1.0                  |
|            | <ul> <li>Sloping roofs ≤3° incline</li> </ul>                                     | 1.0                  |
|            | Gravel roofs                                                                      | 0.8                  |
|            | • Green roofs*                                                                    |                      |
|            | • For intensive greening                                                          | 0.5                  |
|            | <ul> <li>For extensive greening with system thickness of 10 cm or more</li> </ul> | 0.3                  |
|            | • For extensive greening with system thickness less than 10 cm                    | 0.5                  |
|            | Semi-permeable and low-runoff surfaces, such as:                                  |                      |
|            | Unpaved streets, courtyards, promenades                                           | 0.5                  |
|            | • Surfaces with slabs                                                             |                      |
|            | <ul> <li>Paved surfaces with joints &gt; 15% of total area</li> </ul>             | 0.6                  |
|            | e.g. 10 cm x 10 cm and smaller                                                    |                      |
|            | Waterbound surfaces                                                               | 0.5                  |
|            | Playgrounds with partial revetment                                                | 0.3                  |
|            | • Sports fields with drainage                                                     |                      |
|            | Synthetic surfaces, artificial turf                                               | 0.6                  |
|            | <ul> <li>Tennis courts and similar sports surfaces</li> </ul>                     | 0.4                  |
|            | • Grass surfaces                                                                  | 0.3                  |
|            | Permeable surfaces with little or no runoff, such as:                             |                      |
|            | Parks and planting areas, gravel and                                              | 0.0                  |
|            | slag surfaces, pebbles, also with partially hardened surfaces such as:            |                      |
|            | <ul> <li>Garden paths with waterbound covering</li> </ul>                         | 0.0                  |
|            | <ul> <li>Driveways and single parking spaces with turfstone</li> </ul>            | 0.0                  |

\* According to "Guidelines for the planning, execution and upkeep of green-roof sites – Guidelines for green-roof sites"

# Table 6: Pressure drops relative to flow rates

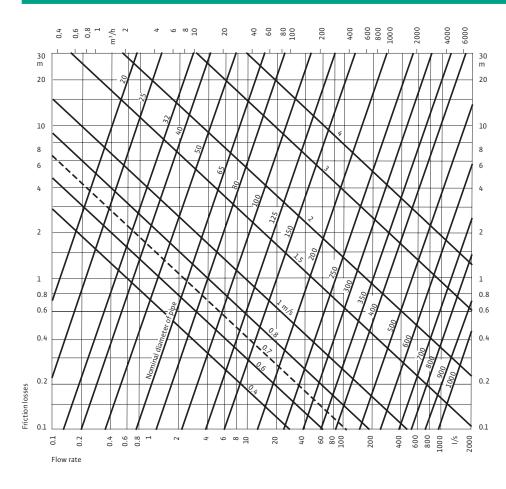
# of HDPE plastic pipes

(DIN 1986-100:2002-03, Table 6)

| Nominal DN 25<br>diameter |          | DN              | 1 32  | DN                       | 40    | DN 5                     | 0     | DN              | 65    |                 |  |
|---------------------------|----------|-----------------|-------|--------------------------|-------|--------------------------|-------|-----------------|-------|-----------------|--|
| dxs                       | 32 x 2.9 |                 | 40    | x 3.7                    | 50    | x 4.6                    | 63 x  | 5.8             | 75    | x 6.9           |  |
| dl                        | 26.      | 26.2            |       | 26.2 32.6                |       | 40                       | 40.8  |                 | .4    | 61.2            |  |
| Q                         | v        | Pressure        | v     | Pressure                 | v     | Pressure                 | v     | Pressure        | v     | Pressure        |  |
|                           |          | drop $\Delta P$ |       | drop $\Delta \mathbf{P}$ |       | drop $\Delta \mathbf{P}$ |       | drop $\Delta P$ |       | drop $\Delta P$ |  |
| [l/s]                     | [m/s]    | [bar/100 m]     | [m/s] | [bar/100 m]              | [m/s] | [bar/100 m]              | [m/s] | [bar/100 m]     | [m/s] | [bar/100 m]     |  |
| 0.0315                    | 0.06     | 0.041           |       |                          |       |                          |       |                 |       |                 |  |
| 0.04                      | 0.08     | 0.0061          |       |                          |       |                          |       |                 |       |                 |  |
| 0.05                      | 0.09     | 0.0088          | 0.06  | 0.0031                   |       |                          |       |                 |       |                 |  |
| 0.063                     | 0.12     | 0.013           | 0.08  | 0.0045                   |       |                          |       |                 |       |                 |  |
| 0.08                      | 0.15     | 0.0195          | 0.1   | 0.0067                   | 0.06  | 0.0024                   |       |                 |       |                 |  |
| 0.1                       | 0.19     | 0.0285          | 0.12  | 0.0098                   | 0.08  | 0.0034                   |       |                 |       |                 |  |
| 0.125                     | 0.24     | 0.0417          | 0.15  | 0.0144                   | 0.1   | 0.005                    | 0.06  | 0.0017          |       |                 |  |
| 0.16                      | 0.3      | 0.0638          | 0.19  | 0.0219                   | 0.12  | 0.0076                   | 0.08  | 0.0027          | 0.05  | 0.0011          |  |
| 0.2                       | 0.38     | 0.0939          | 0.24  | 0.0321                   | 0.15  | 0.0111                   | 0.1   | 0.0037          | 0.07  | 0.0016          |  |
| 0.25                      | 0.47     | 0.1384          | 0.3   | 0.0473                   | 0.19  | 0.0163                   | 0.12  | 0.0055          | 0.09  | 0.0024          |  |
| 0.315                     | 0.59     | 0.2072          | 0.38  | 0.0796                   | 0.24  | 0.0244                   | 0.15  | 0.0082          | 0.111 | 0.0036          |  |
| 0.4                       | 0.75     | 0.3152          | 0.48  | 0.1071                   | 0.31  | 0.0369                   | 0.19  | 0.0123          | 0.14  | 0.0054          |  |
| 0.5                       | 0.94     | 0.4672          | 0.6   | 0.1585                   | 0.38  | 0.0544                   | 0.24  | 0.0182          | 0.17  | 0.0079          |  |
| 0.63                      | 1.19     | 0.7039          | 0.76  | 0.2381                   | 0.48  | 0.0816                   | 0.30  | 0.0272          | 0.21  | 0.0119          |  |
| 0.8                       | 1.51     | 1.0776          | 0.96  | 0.3634                   | 0.61  | 0.1242                   | 0.39  | 0.0413          | 0.27  | 0.018           |  |
| 1.0                       | 1.88     | 1.6072          | 1.2   | 0.5405                   | 0.77  | 0.1842                   | 0.48  | 0.0611          | 0.34  | 0.0266          |  |
| 1.25                      | 2.35     | 2.4022          | 1.5   | 0.8053                   | 0.96  | 0.2738                   | 0.6   | 0.0906          | 0.43  | 0.0394          |  |
| 1.6                       | 3.01     | 3.7567          | 1.92  | 1.2547                   | 1.22  | 0.4253                   | 0.77  | 0.1403          | 0.54  | 0.0609          |  |
| 2.0                       |          |                 | 2.4   | 1.8774                   | 1.53  | 0.6345                   | 0.96  | 0.2088          | 0.68  | 0.0904          |  |
| 2.5                       |          |                 | 3     | 2.8148                   | 1.91  | 0.9483                   | 1.21  | 0.3112          | 0.85  | 0.1345          |  |
| 3.15                      |          |                 |       |                          | 2.41  | 1.4406                   | 1.518 | 0.4714          | 1.07  | 0.2033          |  |
| 4.0                       |          |                 |       |                          | 3.06  | 2.2247                   | 1.928 | 0.7254          | 0.36  | 0.3123          |  |
| 5.0                       |          |                 |       |                          |       |                          | 2.41  | 1.0873          | 1.7   | 0.467           |  |
| 6.3                       |          |                 |       |                          |       |                          | 3.036 | 1.6567          | 2.14  | 0.7098          |  |
| 8.0                       |          |                 |       |                          |       |                          |       |                 | 2.72  | 1.0965          |  |
| 10.0                      |          |                 |       |                          |       |                          | •     |                 | 3.4   | 1.6493          |  |

# Table 6: Pressure drops relative to flow ratesof HDPE plastic pipes

#### (continued)


| Nominal DN 80<br>diameter |          |                          | DN         | 100                      | DN         | 100                      | DN 1       | 25                       | DN              | 150                      |  |
|---------------------------|----------|--------------------------|------------|--------------------------|------------|--------------------------|------------|--------------------------|-----------------|--------------------------|--|
| dxs                       | 90 x 8.2 |                          | 110 x 10.0 |                          | 125 x 11.4 |                          | 140 x 12.8 |                          | 12.8 160 x 14.6 |                          |  |
| dl                        | 73.      | .6                       | 90         |                          | 10         | 2.2                      | 114.4      | F                        | 13              | 130.8                    |  |
| Q                         | v        | Pressure                 | v          | Pressure                 | v          | Pressure                 | v          | Pressure                 | v               | Pressure                 |  |
|                           |          | drop $\Delta \mathbf{P}$ |            | drop $\Delta \mathbf{P}$ |            | drop $\Delta \mathbf{P}$ |            | drop $\Delta \mathbf{P}$ |                 | drop $\Delta \mathbf{P}$ |  |
| [l/s]                     | [m/s]    | [bar/100 m]              | [m/s]      | [bar/100 m]              | [m/s]      | [bar/100 m]              | [m/s]      | [bar/100 m]              | [m/s]           | [bar/100 m]              |  |
| 0.3                       | 0.06     | 0.01                     |            |                          |            |                          |            |                          |                 |                          |  |
| 0.3                       | 0.07     | 0.0015                   |            |                          |            |                          |            |                          |                 |                          |  |
| 0.4                       | 0.09     | 0.0023                   | 0.06       | 0.0009                   |            |                          |            |                          |                 |                          |  |
| 0.5                       | 0.12     | 0.0033                   | 0.08       | 0.0013                   | 0.06       | 0.0007                   |            |                          |                 |                          |  |
| 0.6                       | 0.15     | 0.0049                   | 0.1        | 0.0019                   | 0.08       | 0.001                    | 0.06       | 0.0006                   |                 |                          |  |
| 0.8                       | 0.19     | 0.0075                   | 0.13       | 0.0029                   | 0.1        | 0.0016                   | 0.08       | 0.0009                   | 0.06            | 0.0005                   |  |
| 1.0                       | 0.24     | 0.0111                   | 0.16       | 0.0043                   | 0.12       | 0.0023                   | 0.1        | 0.0014                   | 0.07            | 0.0007                   |  |
| 1.3                       | 0.29     | 0.0163                   | 0.2        | 0.0063                   | 0.15       | 0.0034                   | 0.12       | 0.0002                   | 0.09            | 0.0011                   |  |
| 1.6                       | 0.38     | 0.0252                   | 0.25       | 0.0097                   | 0.2        | 0.0054                   | 0.16       | 0.0031                   | 0.12            | 0.0016                   |  |
| 2.0                       | 0.47     | 0.0374                   | 0.31       | 0.0143                   | 0.24       | 0.0078                   | 0.2        | 0.0046                   | 0.015           | 0.0024                   |  |
| 2.5                       | 0.59     | 0.0555                   | 0.39       | 0.0212                   | 0.31       | 0.0116                   | 0.24       | 0.0068                   | 0.19            | 0.0036                   |  |
| 3.2                       | 0.74     | 0.0838                   | 0.5        | 0.032                    | 0.38       | 0.0174                   | 0.31       | 0.0102                   | 0.23            | 0.0054                   |  |
| 4.0                       | 0.94     | 0.1285                   | 0.63       | 0.489                    | 0.49       | 0.0266                   | 0.39       | 0.0155                   | 0.3             | 0.0082                   |  |
| 5.0                       | 1.18     | 0.1917                   | 0.79       | 0.0729                   | 0.61       | 0.0396                   | 0.49       | 0.0231                   | 0.37            | 0.0121                   |  |
| 6.3                       | 1.48     | 0.2908                   | 0.99       | 0.1103                   | 0.77       | 0.0598                   | 0.61       | 0.0348                   | 0.47            | 0.0183                   |  |
| 8.0                       | 1.88     | 0.448                    | 1.26       | 0.1695                   | 0.98       | 0.0919                   | 0.78       | 0.0534                   | 0.6             | 0.0281                   |  |
| 10.0                      | 2.35     | 0.6722                   | 1.57       | 0.2537                   | 1.22       | 0.1373                   | 0.97       | 0.0797                   | 0.74            | 0.0419                   |  |
| 13.0                      | 2.94     | 1.0104                   | 1.97       | 0.3804                   | 1.52       | 0.2056                   | 1.22       | 0.1193                   | 0.93            | 0.0625                   |  |
| 16.0                      |          |                          | 2.52       | 0.5966                   | 1.95       | 0.3219                   | 1.56       | 0.1865                   | 1.19            | 0.0976                   |  |
| 20.0                      |          |                          | 3.14       | 0.8977                   | 2.44       | 0.4836                   | 1.95       | 0.2798                   | 1.49            | 0.1463                   |  |
| 25.0                      |          |                          |            |                          | 3.05       | 0.7279                   | 2.43       | 0.4205                   | 1.86            | 0.2195                   |  |
| 32.0                      |          |                          |            |                          |            |                          | 3.0650     | 0.6424                   | 2.34            | 0.3347                   |  |
| 40.0                      |          |                          |            |                          |            |                          |            |                          | 2.98            | 0.5188                   |  |

### Table 7: Inner diameters of new pipes (in accordance with corresponding DIN)

In each case, smallest diameters of the nominal diameters

| DN  | Cast iron pipe<br>PN16 | PVC pipe<br>PN10 | PE80HD pipe<br>SDR11<br>PN12.5 | PE100HD pipe<br>SDR11 | Minimum value acc.<br>to DIN EN 12056-2<br>(for cast iron) |
|-----|------------------------|------------------|--------------------------------|-----------------------|------------------------------------------------------------|
|     | [mm]                   | [mm]             | [mm]                           | [mm]                  | [mm]                                                       |
| 32  | not specified          | 36               | 32.6                           | 32.6                  | n. s.                                                      |
| 40  | n. s.                  | 45.2             | 40.8                           | 40.8                  | 34                                                         |
| 50  | n. s.                  | 57.0             | 51.4                           | 51.4                  | 44                                                         |
| 65  | n. s.                  | 67.8             | 61.2                           | 61.2                  | n. s.                                                      |
| 80  | 80                     | 81.4             | 73.6                           | 73.6                  | 75                                                         |
| 100 | 100                    | 99.4             | 90.0                           | 90.0                  | 96                                                         |
| 150 | 151                    | 144.6            | 130.8                          | 130.8                 | 146                                                        |
| 200 | 202                    | 203.4            | 184                            | 184                   | 184                                                        |

#### **Table 8: Pipe friction losses and correction factors**



c = 0.1 mm (e.g. new cast iron pipes, bitumen-coated cast iron pipes, straight welded steel pipes)

Friction losses in "m" per 100 m New cast iron pipeline

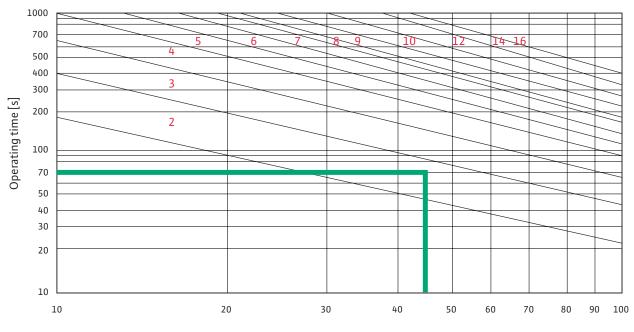
For factors for adjustment to other materials or older pipes, see page 83

# Table 8: Pipe friction losses and correction factors

#### Continued

| 0.1   | New galvanised steel pipes                        |
|-------|---------------------------------------------------|
| 0.8   | New rolled steel pipes, new plastic pipes         |
| 1.0   | New cast iron pipe, bitumen-coated cast iron pipe |
| 1.25  | Older, rusted cast iron pipes                     |
| 1.5   | New galvanised steel pipes, clean cast iron pipes |
| 1.7   | Encrusted pipes                                   |
| 2     | New concrete pipes, medium-smooth                 |
| 2.5   | Stoneware pipes <tab></tab>                       |
| 3     | New concrete pipes, smooth finish                 |
| 15-30 | Cast iron pipes with light to heavy encrustations |

# Table 9: Losses in fittings


Guide values for rough calculation of losses, specified in m of pipeline length (for reducers or expanders, always refers to the larger diameter).

| Type of resistance                      |           | DN 32 | DN 40 | DN 50 | DN 65 | DN 80 | DN 100 | DN 150 | DN 200 |
|-----------------------------------------|-----------|-------|-------|-------|-------|-------|--------|--------|--------|
| Branch or T-piece                       | ıЩ        | 2.02  | 2.74  | 3.87  | 5.61  | 6.58  | 8.85   | 15.45  | 23.36  |
| Expander                                | $\forall$ | -0.85 | -1.13 | -1.5  | -2.29 | -2.4  | -3.72  | -5.02  | -13.22 |
| Reducer                                 | $\square$ | 1.08  | 1.45  | 1.94  | 2.46  | 3.19  | 4.85   | 8.04   | 19.25  |
| Abrupt<br>expander                      | Ð         | -0.24 | -0.34 | -0.48 | -0.56 | -0.76 | -1.05  | -1.96  | -2.6   |
| Abrupt<br>reducer                       | Þ         | 0.29  | 0.42  | 0.6   | 0.7   | 0.95  | 1.31   | 2.45   | 3.25   |
| Bends with R = d and smooth surface 45° | ſ         | 0.11  | 0.15  | 0.2   | 0.3   | 0.4   | 0.55   | 0.95   | 1.4    |
| 60°                                     | Ĺ         | 0.15  | 0.2   | 0.28  | 0.43  | 0.59  | 0.93   | 1.5    | 2.28   |
| 90°                                     | $\square$ | 0.19  | 0.27  | 0.38  | 0.58  | 0.79  | 1.11   | 2.06   | 3.18   |
| Check valve                             |           | 1.7   | 1.48  | 1.84  | 2.6   | 3.3   | 4.26   | 7.26   | 10.58  |
| Gate valves,<br>ball valves             | $\bowtie$ | 0.27  | 0.3   | 0.38  | 0.49  | 0.56  | 0.7    | 1.08   | 1.45   |

### Table 10: Operating cycles per hour of Wilo pumps (recommended)

| Wilo-Drain TMW            | 30 |  |
|---------------------------|----|--|
| Wilo-Drain CP             | 15 |  |
| Wilo-Drain TC 40          | 30 |  |
| Wilo-Drain VC             | 20 |  |
| Wilo-Drain TS 40–65       | 20 |  |
| Wilo-Drain MTS 40         | 20 |  |
| Wilo-Drain TP 50–65       | 20 |  |
| Wilo-Drain TP 80–150      | 20 |  |
| Wilo-Drain STS 80–100     | 20 |  |
| Wilo-Drain STC 80–100     | 15 |  |
| Wilo-Drain FA 15.xx–20.xx | 10 |  |

# Table 11: Sump pump stations in parallel operation (guide values)



Number of the sump pump stations in the pressure drainage system

According to T. Szabo, Debrecan, Hungary (KA 8/1988) Probability of approx. 95%

# Conversion tables of dimensions

| Table 12. C        | 0.001// | ersion table — lengt         | the volumos and v                       | voights                                    |                              |                              |
|--------------------|---------|------------------------------|-----------------------------------------|--------------------------------------------|------------------------------|------------------------------|
| Table 12: Co       | onvo    | ersion table – lengt         | ths, volumes and v                      | vergnits                                   |                              |                              |
| 0.03937 inch       | =       | 1 mm                         | 25.4 mm =                               | 1 inch                                     |                              |                              |
| 0.3937 inch        | =       | 1 cm                         | 2.54 cm =                               | 1 inch                                     |                              |                              |
| 39.37 inches       | =       | 1 m                          | 0.0254 m =                              | 1 inch                                     |                              |                              |
| 3.281 ft           | =       | 1 m                          | 0.03048 m =                             | 1 ft                                       |                              |                              |
| 1.0936 yd          | =       | 1 m                          | 0.9144 m =                              | 1 yd                                       |                              |                              |
| 0.6214 miles       | =       | 1 km                         | 1.609 km =                              | 1 mile                                     |                              |                              |
| 1 kW               | =       | 1.341 hp                     | 0.7455 hp =                             | 1 kW                                       |                              |                              |
| 1 inch             | =       | 0.0833 ft                    | 1 ft =                                  | 12 inches                                  |                              |                              |
| 1 ft               | =       | 0.3333 yd                    | 1 yd =                                  | 3 ft                                       |                              |                              |
| 1 yd               | =       | 0.000568 miles               | 1 mile =                                | 1.76 yd                                    |                              |                              |
| 1 l/sec            | =       | 0.016 I/min                  | 1 l/min =                               | 60 l/sec                                   |                              |                              |
|                    |         |                              |                                         |                                            |                              |                              |
| 1 l/min<br>1 l/sec |         | 0.016 l/hr<br>60 l/hr        | 1 l/hr =<br>1 l/hr =                    | 60 l/min<br>3600 l/sec                     |                              |                              |
| ,                  |         | 20.1.1                       |                                         | 2000 1/200                                 |                              |                              |
|                    |         | cm                           | m                                       | in                                         | ft                           | yd                           |
| 1 cm               |         | 1                            | 0.01                                    | 0.3937                                     | 0.0328                       | 0.0109336                    |
| 1 m                |         | 100                          | 1                                       | 39.37                                      | 3.2808                       | 1.0936                       |
| 1 in               |         | 2.54                         | 0.00254                                 | 1                                          | 0.0833                       | 0.028                        |
| 1 ft               |         | 10.48                        | 0.3048                                  | 12                                         | 1                            | 0.333                        |
| l yd               |         | 91.44                        | 0.9144                                  | 36                                         | 3                            | 1                            |
|                    |         | cm <sup>2</sup>              | m²                                      | in <sup>2</sup>                            | ft²                          | yd²                          |
| 1 cm <sup>2</sup>  |         | 1                            | 10-4                                    | 0.15499969                                 | 1.0763867 x 10 <sup>-3</sup> | 1.1959853 x 10 <sup>-3</sup> |
| 1 m²               |         | 104                          | 1                                       | 1549.9969                                  | 10.763867                    | 1.1959853                    |
| 1 in²              |         | 6.4516                       | 6.4516258 x 10 <sup>-4</sup>            | 1                                          | 6.9444444 x 10 <sup>-3</sup> | 7.7160494 x 10 <sup>-3</sup> |
| 1 ft <sup>2</sup>  |         | 929.034                      | 0.092903412                             | 144                                        | 1                            | 2                            |
| 1 yd²              |         | 8361.307                     | 0.8361307                               | 1296                                       | 9                            | <br>0.1111111                |
|                    |         |                              |                                         |                                            |                              |                              |
|                    |         | cm <sup>3</sup>              | in <sup>3</sup>                         | ft³                                        |                              |                              |
| 1 cm³              |         | 1                            | 0.061023378                             | 3.5314455 x 10 <sup>-4</sup>               |                              |                              |
| 1 in³              |         | 16.387162                    | 6.4516258 x 10 <sup>-4</sup>            | 1                                          |                              |                              |
| 1 ft³              |         | 2.8317017 x 10 <sup>-4</sup> | 0.092903412                             | 144                                        |                              |                              |
| 1 ml               |         | 1.000028                     | 0.8361307                               | 1296                                       |                              |                              |
| 1                  |         | 1.000028 x 10 <sup>-3</sup>  | 836.1307                                | 1296000                                    |                              |                              |
| 1 gal              |         | 3.7854345 x 10 <sup>-3</sup> | 4.3290043 x 10 <sup>-3</sup>            | 7.4805195                                  |                              |                              |
|                    |         | ml                           | litros                                  | gal                                        |                              |                              |
| 1 cm <sup>3</sup>  |         | 0.999972                     | litres<br>0.9999720 x 10 <sup>-3</sup>  | <b>gal</b><br>2.6417047 x 10 <sup>-4</sup> |                              |                              |
| 1 in <sup>3</sup>  |         | 16.3867                      | 1.63870 x 10 <sup>-2</sup>              | 4.3290043 x 10 <sup>-3</sup>               |                              |                              |
| 1 ft <sup>3</sup>  |         | 2.831622 x 104               | 28.31622                                | 7.4805195                                  |                              |                              |
| ⊥ 1 l <sup>-</sup> |         |                              | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • •    |                              |                              |
| 1 ml               |         |                              |                                         |                                            |                              |                              |
| 1 ml<br>1 l        |         | 1<br>10 <sup>-3</sup>        | 0.001                                   | 2.641779 x 10 <sup>-4</sup><br>0.2641779   |                              |                              |

|          | g                           | kg               | lb                           | metric ton                   | ton                          |
|----------|-----------------------------|------------------|------------------------------|------------------------------|------------------------------|
| 1 g      | 1                           | 10 <sup>-3</sup> | 2.2046223 x 10 <sup>-3</sup> | 10-6                         | 1.1023112 x 10 <sup>-6</sup> |
| 1 kg     | 10 <sup>3</sup>             | 1                | 2.2046223                    | 10-3                         | 1.1023112 x 10 <sup>-3</sup> |
| 1 lb     | 4.5359243 x 10 <sup>2</sup> | 0.45359243       | 1                            | 4.5359243 x 10 <sup>-4</sup> | 0.0005                       |
| 1 mt ton | 10 <sup>6</sup>             | 10-3             | 2204.6223                    | 1                            | 1.1023112                    |
| 1 ton    | 907184.86                   | 907.18486        | 2000                         | 0.90718486                   | 1                            |

| Table 13: Conversion table – temperatures |    |                                                 |  |  |  |
|-------------------------------------------|----|-------------------------------------------------|--|--|--|
| Conversion                                |    | Conversion formula                              |  |  |  |
| from                                      | to |                                                 |  |  |  |
| °C                                        | °F | $t [^{\circ}F] = 1.8 \times t [^{\circ}C] + 32$ |  |  |  |
|                                           | K  | $T[K] = t[^{\circ}C] + 273.15$                  |  |  |  |
| °F                                        | °C | $t [^{\circ}C] = (t [^{\circ}F] - 32) : 1.8$    |  |  |  |
|                                           | К  | T[K] = (t[°F] + 459.67): 1.8                    |  |  |  |
| К                                         | °C | t [°C] = T [K] - 273.15                         |  |  |  |
|                                           | °F | t [°F] = 1.8 x T [K] – 459.67                   |  |  |  |

# Abbreviations

| Acronym  | Description                                                                       |
|----------|-----------------------------------------------------------------------------------|
| AISI     | American Iron and Steel Institute                                                 |
| ASTM     | American Society for Testing and Materials                                        |
| ATV-DVWK | German Wastewater Association                                                     |
| DWA      | German Association for Water, Wastewater and Waste; new name for the              |
|          | ATV–DVWK beginning in 2005                                                        |
| IEC      | International Electrotechnical Commission                                         |
| ISO      | International Standards Organisation                                              |
| DIN      | German Institution for Standardisation                                            |
| EN       | European Standards published by the CEN (European Committee for Standardisation). |
| UL       | Underwriters Laboratories                                                         |
| CSA      | Canadian Standards Association                                                    |
| VDE      | German Association of Electrical, Electronic & Information Technologies           |
| VDMA     | German Mechanical and Plant Engineering Association                               |

# Standards

#### ASTM 182 = EN 10088-3

Stainless steels

#### ATV-DVWK A 116 (DWA A 116)

Special Sewer Systems – Vacuum Drainage Service – Pressure Drainage Service

#### ATV-DVWK A 134 (DWA A 134)

Planning and Construction of Wastewater Pump Stations with Small Inflows

#### ATV-DVWK A 157 (DWA A 157)

Construction of Sewer Systems

# ATV-DVWK M 168 (DWA M 168)

Corrosion of Wastewater Systems – Wastewater Discharge

#### **DIN EN 476**

General requirements for components used in discharge pipes, drains and sewers for gravity systems

#### DIN 1986 Part 1

Wastewater lifting plants for buildings and sites, technical requirements for construction

#### DIN 1986-100: 2002-03 Annex A

Rainfall events in Germany

#### DIN 4109

Sound insulation in buildings

#### DIN EN 12050-1

Wastewater lifting plants for buildings and sites – Principles of construction and testing – Part 1: Lifting plants for wastewater containing faecal matter

#### DIN EN 12050-2

Wastewater lifting plants for buildings and sites – Principles of construction and testing – Part 2: Lifting plants for faecal-free wastewater

#### **DIN EN 12050-3**

Wastewater lifting plants for buildings and sites – Principles of construction and testing – Part 3: Lifting plants for wastewater containing faecal matter for limited applications

#### **DIN EN 12050-4**

Wastewater lifting plants for buildings and sites – Principles of construction and testing – Part 4: Non-return valves for faecal-free wastewater and wastewater containing faecal matter

#### EN 752 Part 1

Drain and sewer systems outside buildings – Generalities and definitions

#### EN 1671

Pressure sewerage systems outside buildings

#### EN 12056-1

Gravity drainage systems inside buildings – Part 1: General and performance requirements

#### EN 12056-2

Gravity drainage systems inside buildings – Part 2: Sanitary pipework, layout and calculation

#### EN 12056-3

Gravity drainage systems inside buildings – Part 3: Roof drainage, layout and calculation

#### EN 12056-4

Gravity drainage systems inside buildings – Part 4: Waste water lifting plants; Layout and calculation

#### EN 12056-5

Gravity drainage systems inside buildings – Part 5: Installation and testing, instructions for operation, maintenance and use

#### EN 10088-3 = ASTM 182

Stainless steels

# Index

# Α

| Runoff coefficient C          | 6, 79              |
|-------------------------------|--------------------|
| Drainage coefficient K        | 6, 76              |
| Abbreviations                 | 86                 |
| Abrasion                      | 6                  |
| Sewage generation             | 6                  |
| Sewage types                  | 6                  |
| AISI                          | 14, 15, 16, 21, 28 |
| Limited-use plants            | 8,74               |
| System curve                  | 17                 |
| Starting current              | 24                 |
| Connecting sewer/pipe         | 17                 |
| Drain connection value DU     | 8, 76              |
| ATEX, s. Explosion protection | 24                 |
| Installation types            | 8                  |
| Buoyancy protection           | 9                  |
| Purging discharge pipelines   | 63                 |

# В

| Ventilation<br>Design rainfall intensity | 9, 63<br>9, 78 |
|------------------------------------------|----------------|
| Petrol separator                         | 63             |
| Concrete                                 | 14             |
| Operating modes                          | 24             |
| Operating time                           | 24             |
| Duty point                               | 17             |
| Bimetal                                  | 26             |
| Brackish water                           | 7              |
| Bus technology                           | 24             |

# С

| Chlorides |
|-----------|
|-----------|

### D

| Roof area (effective) | 10         |
|-----------------------|------------|
| Seal materials        | 16         |
| DIN 1986              | 10         |
| DIN EN 12050          | 10         |
| Pressure drainage     | 10         |
| Discharge pipeline    | 17, 74     |
| Pressure sensor       | 27,28      |
| Water hammer          | 17, 66     |
| DU value              | 10         |
| Pressure drops        | 18, 80, 81 |
|                       |            |

# Е

| Stainless steel 1.4301 – V2A | 14 |
|------------------------------|----|
| Stainless steel 1.4404 – V4A | 15 |
| Operating cycles             | 84 |
| Individual operation         | 18 |

| Individual run signal   | 24         |
|-------------------------|------------|
| Individual fault signal | 24         |
| Electrical conductivity | 11         |
| EN 12056                | 11         |
| Ventilation             | 18, 67, 68 |
| EPDM                    | 16         |
| Ex isolating relay      | 25         |
| Explosion protection    | 24         |
|                         |            |

# F

| Lifting plant for wastewater contain | ning faecal |
|--------------------------------------|-------------|
| matter                               | 32, 73      |
| Downpipe                             | 18          |
| Fault diagnostics                    | 67, 68      |
| Grease separator                     | 63          |
| Flow velocity                        | 13, 14, 18  |
| Delivery head                        | 19          |
| Fluid                                | 11          |
| Delivery rate                        | 19          |
| Flow rate                            | 20          |
| FPM                                  | 16          |
| Free (ball) passage                  | 19          |
| Gravity drainage line                | 19          |
|                                      |             |

# G

| Housing materials | 16     |
|-------------------|--------|
| Noise development | 11, 13 |
| Cast iron         | 14     |
| Ground pipe       | 19     |

# н

11

| Hardness of water | 12 |
|-------------------|----|
| Domestic sewage   | 6  |

# L.

| Commissioning                  | 73 |
|--------------------------------|----|
| Industrial sewage              | 7  |
| Integrated temperature sensors | 26 |
| IP protection classes          | 25 |

# Κ

| Cavitation          | 21, 22, 67 |
|---------------------|------------|
| Condensates         | 7          |
| Corrosion           | 11         |
| Costs               | 9          |
| Free (ball) passage | 19         |

# L

| Impeller types                | 19, 21 |
|-------------------------------|--------|
| Output                        | 25     |
| Pipe gradient                 | 21     |
| LON (Local Operating Network) | 26     |

# Μ

| Sea water                 | 7  |
|---------------------------|----|
| Minimum gradient          | 22 |
| Minimum nominal diameters | 22 |
| Combined system           | 12 |
| With effect of wind       | 10 |
| Motor protection          | 26 |
| Motor protection switch   | 26 |

### Ν

| NBR                      | 16           |
|--------------------------|--------------|
| Nominal current          | 29           |
| Nominal diameter         | 22           |
| Nitrates                 | 12           |
| Nitrates                 | 12           |
| Level measurement system | 27, 28       |
| Standards                | 2, 5, 10, 86 |
| NPSH                     | 21, 22       |
| Usable volume            | 12           |

# 0

| Without effect of wind | 10 |
|------------------------|----|
| Oil separator          | 63 |

# Ρ

| Parallel connection               | 22    |
|-----------------------------------|-------|
| HDPE (polyethylene)               | 15    |
| pH value                          | 7, 12 |
| Floating normally closed contacts | 29    |
| PP (polypropylene)                | 15    |
| PT100, PTC                        | 27    |
| PUR (polyurethane)                | 15    |
| Sumps, see sump pump stations     |       |
| PVC (polyvinyl chloride)          | 15    |
|                                   |       |

# R

| Rainwater                    | 6, 14      |
|------------------------------|------------|
| Rainfall intensity           | 78         |
| Rainwater inflow calculation | 10         |
| Pipe inner diameter          | 79, 80, 81 |
| Pipeline curve               | 17, 18     |
| Pipe friction losses         | 82, 83     |
|                              |            |

| Series connection   | 23 |
|---------------------|----|
| Backflow level      | 12 |
| Backflow loop       | 13 |
| Backflow protection | 13 |

### S

| Sand                    | 5, 16                         |
|-------------------------|-------------------------------|
| Collective run signal   | 29                            |
| Collective fault signal | 29                            |
| Sump cover              | 13                            |
| Sump design             | 66                            |
| Sump pump stations      | 8, 9, 10, 11, 12, 17, 20, 40, |
|                         | 46, 52, 57, 66, 71, 75, 84    |
| Sound insulation        | 11, 13                        |
| Operating cycles        | 12, 23, 84                    |
| Switching volumes       | 23                            |
| Gravity drainage        | 19, 21                        |
| Power supply            | 29                            |
| Impoundment volume (I   | required) 12                  |
| Fault signals           | 29                            |
| Sulphates               | 12                            |
| Sump volume             | 23                            |
|                         |                               |

# D

| Diving bell               | 28 |
|---------------------------|----|
| Thermistor                | 27 |
| Thermal overcurrent relay | 26 |
| Separate system           | 14 |

# U

| Conversion tables | 85, | 86 |
|-------------------|-----|----|
|                   |     |    |

#### v

| V2A, V4A             | 14, 15 |
|----------------------|--------|
| Losses in pipeline   | 82, 83 |
| Insurance protection | 5, 13  |
| Viton                | 16     |
| Flow rate            | 19     |

# w

| Maintenance               | 9, 14, 75 |
|---------------------------|-----------|
| Water hardness            | 14        |
| Water consumption figures | 77        |
| Materials properties      | 16        |
| Materials                 | 14, 15    |

# Z

| Zener barrier | 29  |
|---------------|-----|
|               | = ) |

WILO AG has invested the greatest care into preparing all of the texts in this Planning Guide. Still, the possibility of errors cannot be excluded. The publisher expressly disclaims any and all liability regardless of legal basis.

Copyright 2005 by WILO AG, Dortmund, Germany

This work and all of its parts are protected by copyright. Any kind of use outside the narrow limits of copyright legislation without the consent of WILO AG is improper and punishable by law. This applies particularly to duplication, copying of individual illustrations, use of excerpts of texts, translation, microfilming, and any other kind of processing, as well as storage and processing in electronic systems.

First edition 2005



#### WILO AG Nortkirchenstrasse 100 44263 Dortmund, Germany Phone (+49) 231 4102-0 Fax (+49) 0231 4102-363 wilo@wilo.de www.wilo.de

# Wilo sales agencies

### G1 North

WILO AG Hamburg sales agency Sinstorfer Kirchweg 74–92 21077 Hamburg, Germany Phone (+49) 40 5559490 Fax (+49) 40 55594949

#### G2 East

WILO AG Berlin sales agency Juliusstrasse 52–53 12051 Berlin-Neukölln, Germany Phone (+49) 30 6289370 Fax (+49) 30 62893770

#### Central order processing for specialist wholesalers

WILO AG Order Processing Nortkirchenstrasse 100 44263 Dortmund, Germany Phone (+49) 231 4102-0 Fax (+49) 231 4102-7555

#### The Wilo Team of Experts

- Answers to all of your questions regarding our products, delivery times, shipment, sales prices
- Processing of your orders
  Spare parts orders with
  24-hour delivery for all
- in-stock spare parts – Mailing informational materials
- intornational materials
- Phone (+49) 1805 R+U+F+W+I+L+O\* 7+8+3+9+4+5+6 Fax (+49) 231 4102-7666

#### Available weekdays between 7 a.m. and 6 p.m.

**G3 Saxony/Thuringia** WILO AG Dresden sales agency Frankenring 8 01723 Kesselsdorf, Germany Phone (+49) 35204 7050 Fax (+49) 35204 70570

#### **G4 Southeast**

WILO AG Munich sales agency Landshuter Strasse 20 85716 Unterschleissheim, Germany Phone (+49) 89 4200090 Fax (+49) 89 42000944

#### Wilo after-sales service

WILO AG Wilo Service Centre Nortkirchenstrasse 100 44263 Dortmund, Germany

- Your primary contact for after-sales service
- Maintenance and commissioning
   Factory repairs
- Spare parts advice
- Phone (+49) 1805 W-I-L+O-K+D\* 9\*4\*5\*6\*5\*3 (+49) 231 4102-7900 Fax (+49) 231 4102-7126

Available weekdays between 7 a.m. and 5 p.m., at all other times interactive voice response system with call–back guarantee! **G5 Southwest** WILO AG Stuttgart sales agency Hertichstrasse 10 71229 Leonberg, Germany Phone (+49) 7152 94710 Fax (+49) 7152 947141

#### G6 Rhine-Main:

WILO AG Frankfurt sales agency An den drei Hasen 31 61440 Oberursel/Ts., Germany Phone (+49) 6171 70460 Fax (+49) 6171 704665

#### Wilo International

Austria Vienna head office: WILO Handelsgesellschaft mbH Eitnergasse 13 1230 Vienna Phone (+43) 1 25062-0 Fax (+43) 1 25062-15

Salzburg sales agency: Gnigler Strasse 56 5020 Salzburg Phone (+43) 662 8716410 Fax (+43) 662 878470

Upper Austria sales agency: Trattnachtalstrasse 7 4710 Grieskirchen Phone (+43) 7248 65051 Fax (+43) 7248 65054

#### Switzerland

EMB Pumpen AG Gerstenweg 7 4310 Rheinfelden Phone (+41) 61 8368020 Fax (+41) 61 8368021

#### G7 West

WILO AG Düsseldorf sales agency Hans-Sachs-Strasse 4 40721 Hilden, Germany Phone (+49) 2103 90920 Fax (+49) 2103 909215

#### **G8 Northwest:**

WILO AG Hannover sales agency Ahrensburger Strasse 1 30659 Hannover–Lahe, Germany Phone (+49) 511 438840 Fax (+49) 511 4388444

# Additional subsidiaries located in:

Belarus, Belgium, Bulgaria, China, Denmark, Finland, France, Greece, Great Britain, Ireland, Italy, Canada, Kazakhstan, Korea, Lebanon, Lithuania, Latvia, The Netherlands, Norway, Poland, Romania, Russia, Sweden, Serbia & Montenegro, Slovakia, Slovenia, Spain, Czech Republic, Turkey, Ukraine, Hungary

You can find their addresses online at **www.wilo.de** or **www.wilo.com**.

Status: March 2005 \*12 cents per minute